精英家教网 > 高中数学 > 题目详情
已知f(x)=x11+ax5-
b
x
+2,f(-2)=6,则f(2)=
 
考点:函数的值
专题:函数的性质及应用
分析:由已知得f(2)=-(211+25a-
b
2
)+2=6,从而211+25a-
b
2
=-4,由此能求出f(2)=211+25a-
b
2
+2=-4+2=-2.
解答: 解:∵f(x)=x11+ax5-
b
x
+2,f(-2)=6,
∴f(2)=-(211+25a-
b
2
)+2=6,
解得211+25a-
b
2
=-4,
∴f(2)=211+25a-
b
2
+2=-4+2=-2.
故答案为:-2.
点评:本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对的边分别为a,b,c,且2sin2
A+B
2
)+cos2C=1,a=1,b=2.
(1)求∠C和边c;
(2)若
BM
=4
BC
BN
=
3
BA
,且点P为△BMN内切圆上一点,求|
PA
|2+|
PB
|2+|
PC
|2的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tan(
π
4
+α)=
1
2

(Ⅰ)求tanα;
(Ⅱ)求
2sinαcosα-cos2α
2cos2α+sin2α
 的值.(参考公式:tan(α+β)=
tanα+tanβ
1-tanαtanβ
 )

查看答案和解析>>

科目:高中数学 来源: 题型:

使得函数f(x)=
1
5
x2-
4
5
x-
7
5
(a≤x≤b)的值域为[a,b](a<b)的实数对(a,b)有
 
对.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={0,1,2,3},B={0,1},则集合A∩B=(  )
A、{0,1,2,3}
B、{2,3}
C、{0,1}
D、{1}

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={α|α=k•180°+90°,k∈z}∪{α|α=k•180°,k∈z},集合B={β|β=k•90°,k∈z},则(  )
A、A?BB、A?B
C、A∩B=∅D、A=B

查看答案和解析>>

科目:高中数学 来源: 题型:

命题“?x∈R,x2+2ax+a>0”的否定为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:
①函数f(x)=
2+x2
+
1
2+x2
有最小值;
②“x2-4x-5=0”的一个必要不充分条件是“x=5”;
③命题 p:?x∈R,tanx=1;命题q:?x∈R,x2-x+1>0.则命题“p∧(?q)”是假命题;
④函数 f(x)=x3-3x2+1 在点(2,f(2))处的切线方程为y=-3 
其中正确命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC中,A、B、C对边分别为a、b、c,已知b=2
7
,∠B=60°,a+c=10.求sin(A+30°)

查看答案和解析>>

同步练习册答案