精英家教网 > 高中数学 > 题目详情
18.已知集合A={x|x2-x-2≤0},集合B={x|1<x≤3},则(∁RA)∩B=(  )
A.(-1,1)B.(1,3]C.(2,3)D.(2,3]

分析 求出A中不等式的解集确定出A,根据全集R求出A的补集,找出A补集与B的交集即可.

解答 解:由A中不等式变形得:(x-2)(x+1)≤0,
解得:-1≤x≤2,即A=[-1,2],
∵全集为R,∴∁RA=(-∞,-1)∪(2,+∞),
∵B=(1,3],
∴(∁RA)∩B=(2,3],
故选:D.

点评 此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知向量$\overrightarrow{a}$=(sinα,$\frac{3}{4}$),$\overrightarrow{b}$=(cosα,$\frac{\sqrt{3}}{4}$),α∈(0,π),且$\overrightarrow{a}$∥$\overrightarrow{b}$,则α=(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.执行如图所示的程序框图,则S的值为(  )
A.55B.65C.36D.78

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线经过圆x2+y2-4x+2y=0的圆心,焦点到渐近线的距离为2,则双曲线C的标准方程是(  )
A.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{4}$=1B.$\frac{{x}^{2}}{4}$-y2=1C.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{16}$=1D.x2-$\frac{{y}^{2}}{4}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设奇函数f(x)满足3f(-2)=8+f(2),则f(-2)的值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.点P(sin2θ,sinθ)位于第三象限,那么θ是第(  )象限角.
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在平行六面体ABCD-A1B1C1D1中,AD=1,CD=2,A1D⊥平面ABCD,AA1与底面ABCD所成角为θ(0<θ<$\frac{π}{2}$),∠ADC=2θ.
(1)求证:平面六面体ABCD-A1B1C1D1的体积V=4sin2θ,并求V的取值范围;
(2)若θ=45°,求异面直线A1C与BB1所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的右焦点为F,过点F作x轴的垂线,与双曲线及其渐近线在第一象限分别交于点A,P,若|AP|=$\frac{a}{3}$,则双曲线的离心率为(  )
A.$\frac{{2\sqrt{3}}}{3}$B.$\frac{{3\sqrt{5}}}{5}$C.$\frac{{3\sqrt{2}}}{2}$D.$\frac{9}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设不等式组$\left\{\begin{array}{l}{2x+y-4≤0}\\{x-y≥0}\\{y≥0}\end{array}\right.$表示的平面区域为D,点A(2,0),点B(1,0),在区域D内随机取一点M,则点M满足|MA|≥$\sqrt{2}$|MB|的概率是$\frac{3π}{16}$.

查看答案和解析>>

同步练习册答案