精英家教网 > 高中数学 > 题目详情

已知函数为大于零的常数。
(1)若函数内调递增,求a的取值范围;
(2)求函数在区间[1,2]上的最小值。

(1),(2)①当
②当时,
③当 

解析试题分析:   2分
(1)由已知,得上恒成立,     3分
上恒成立, 又     5分
               6分
(2)①当时,在(1,2)上恒成立, 这时在[1,2]上为增函数
               8分
②当在(1,2)上恒成立, 这时在[1,2]上为减函数
             10分
③当时,  令
 
                 12分
综上,在[1,2]上的最小值为
①当
②当时,
③当               13分
考点:本题考查了导数的运用
点评:对于此类问题要把函数的单调性特征与导数两个知识加以有机会组合.特别,在研究函数的单调区间或决断函数的单调性时,三个基本步骤不可省,一定要在定义域内加以求解单调区间或判断单调性

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)当a=﹣2时,求函数f(x)的单调区间;
(Ⅱ)若g(x)= +1,+∞)上是单调函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求的单调区间;(2)求上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数 (R).
(1) 若,求函数的极值;
(2)是否存在实数使得函数在区间上有两个零点,若存在,求出的取值范围;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数
(1)求的极值点;
(2)若恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若存在实常数,使得函数对其定义域上的任意实数分别满足:,则称直线的“隔离直线”.已知为自然对数的底数).
(1)求的极值;
(2)函数是否存在隔离直线?若存在,求出此隔离直线方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)当时,求证:函数上单调递增;
(Ⅱ)若函数有三个零点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知.
(1)已知函数h(x)=g(x)+ax3的一个极值点为1,求a的取值;
(2) 求函数上的最小值;
(3)对一切恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)设函数,且的极值点.
(Ⅰ) 若的极大值点,求的单调区间(用表示);
(Ⅱ) 若恰有两解,求实数的取值范围.

查看答案和解析>>

同步练习册答案