精英家教网 > 高中数学 > 题目详情

已知函数
(1)求的单调区间;(2)求上的最小值.

(1)增区间:;减区间:(2)-18

解析试题分析:解:(1)
          
若 ,故上是增函数  
若 ,故上是减函数     
(2)  

考点:函数的性质
点评:对于比较复杂的函数,要得到其性质,可通过导数来求解。在求单调区间中,要用到的结论是:为增函数;为减函数。而求函数在一个区间中最值,通常是求出极值和区间两端点对应的函数值,然后得到最值。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数 
(Ⅰ)若曲线y=f(x)在(1,f(1))处的切线与直线x+y+1=0平行,求a的值;
(Ⅱ)若a>0,函数y=f(x)在区间(a,a 2-3)上存在极值,求a的取值范围;
(Ⅲ)若a>2,求证:函数y=f(x)在(0,2)上恰有一个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求函数的单调区间;
(2)任意恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
若函数处取得极值,试求的值;
在(1)的条件下,当时,恒成立,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(I)若的极值点,求实数的值;
(II)若上为增函数,求实数的取值范围;
(Ⅲ)当时,方程有实根,求实数的最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

的导数为,若函数的图像关于直对称,且. (1)求实数的值 ;(2)求函数的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知f(x)=(x∈R)在区间[-1,1]上是增函数.
(1)求实数a的值组成的集合A;
(2)设关于x的方程f(x)=的两个非零实根为x1、x2.试问:是否存在实数m,使得不等式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数为大于零的常数。
(1)若函数内调递增,求a的取值范围;
(2)求函数在区间[1,2]上的最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求曲线在点处的切线方程;
(2)直线为曲线的切线,且经过原点,求直线的方程及切点坐标.

查看答案和解析>>

同步练习册答案