精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x2-2ax+1.
(1)若函数f(x)在区间(0,1)和(1,3)上各有一个零点,求a的取值范围;
(2)若函数在区间[-1,2]上有最小值-1,求a的值.
分析:(1)若函数f(x)在区间(0,1)和(1,3)上各有一个零点,故有
f(0)>0
f(1)<0
f(3)>0
,解不等式组求出a的取值范围.
(2)由于二次函数的对称轴为x=a,分a<-1、-1≤a≤2、a>2三种情况,分别根据最小值求出a的值,取并集,即得所求.
解答:解:(1)若函数f(x)在区间(0,1)和(1,3)上各有一个零点,故有
f(0)>0
f(1)<0
f(3)>0

1>0
1-2a+1<0
9-6a>0
,解得 0<a<
5
3

故a的取值范围为(0,
5
3
).
(2)若函数在区间[-1,2]上有最小值-1,由于函数的对称轴为x=a,
当a<-1时,函数f(x)在区间[-1,2]上是增函数,最小值为f(-1)=1+2a+1=-1,解得a=-
3
2

当-1≤a≤2时,函数f(x)在区间[-1,2]上先减后增,最小值为f(a)=-a2+1=-1,解得a=
2
 或-
2
(舍去).
当a>2时,函数f(x)在区间[-1,2]上是减函数,最小值为f(2)=5-4a=-1,解得a=
3
2
(舍去).
综上,a的值为-
3
2
 或
2
点评:本题考查函数零点的判定定理,求二次函数在闭区间上的最值的方法,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案