精英家教网 > 高中数学 > 题目详情
6.(1)化简$\root{3}{{a}^{\frac{9}{2}}\sqrt{{a}^{-3}}}$÷$\sqrt{\root{3}{{a}^{-7}}}$•$\root{3}{{a}^{13}}$;
(2)解不等式ax+5<a4x-1(a>0,且a≠1)

分析 (1)化根式为分数指数幂,然后利用有理指数幂的运算性质求得答案;
(2)对a分类,然后利用指数式的单调性化指数不等式为一次不等式求解.

解答 解:(1)$\root{3}{{a}^{\frac{9}{2}}\sqrt{{a}^{-3}}}$÷$\sqrt{\root{3}{{a}^{-7}}•\root{3}{{a}^{13}}}$
=$({a}^{\frac{9}{2}}•{a}^{-\frac{3}{2}})^{\frac{1}{3}}$$÷({a}^{-\frac{7}{3}}•{a}^{\frac{13}{3}})^{\frac{1}{2}}$
=1;
(2)当a>1时,原不等式可变为x+5<4x-1,解得x>2;
当0<a<1时,原不等式可变为x+5>4x-1,解得x<2.
故当a>1时,原不等式的解集为(2,+∞);
当0<a<1时,原不等式的解集为(-∞,2).

点评 本题考查有理指数幂的化简与求值,考查了指数不等式的解法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源:2016-2017学年湖南益阳市高二9月月考数学(理)试卷(解析版) 题型:选择题

函数的最大值和最小正周期分别是 ( )

A.2,π B. C. 2,2π D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\frac{1}{3}$x3-ax2+(a2-1)x+b(a,b∈R)
(Ⅰ)若x=1为f(x)的极值点,求实数a的值;
(Ⅱ)若y=f(x)的图象在点(1,f(1))处的切线方程为x+y-3=0,求f(x)在区间[-1,4]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在三棱锥P-ABC中,AB⊥BC,AB=BC=kPA,点O、D分别是AC、PC的中点,OP⊥底面ABC.
(1)求证:OD∥面PAB;
(2)当k=$\frac{1}{2}$时,求直线PA与BC所成角的余弦值;
(3)当k取何值时,O在平面PBC内的射影恰好为△PBC的重心?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设抛物线y2=8x上有两点A,B,其焦点为F,满足$\overrightarrow{AF}$=2$\overrightarrow{FB}$,则|AB|=9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.一台机器使用的时间较长,但还可以使用,它按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有缺点零件的多少,随机器的运转的速度而变化,表为抽样试验的结果:
转速x(转/秒)1614128
每小时生产有缺点的零件数y(件)11985
假设y对x有线性相关关系,求回归直线方程;$\widehat{b}$=$\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)÷\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.以抛物线x2=16y的焦点为圆心,且与抛物线的准线相切的圆的方程为x2+(y-4)2=64.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知a>0且a≠1,用比较法证明:an$+\frac{1}{{a}^{n}}$>a+$\frac{1}{a}$(n>2,n∈N).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=3x-3|x|,若3tf(2t)-mf(t)≥0对于t∈[-2,-1]恒成立,则实数m范围是(  )
A.[$\frac{1}{9}$,+∞)B.(-∞,$\frac{1}{9}$]C.[$\frac{10}{9}$,+∞)D.(-∞,$\frac{10}{9}$]

查看答案和解析>>

同步练习册答案