精英家教网 > 高中数学 > 题目详情
17.三棱锥P-ABC中,PA=AB=BC=2,PB=AC=2$\sqrt{2}$,PC=2$\sqrt{3}$,则三棱锥P-ABC的外接球的表面积为12π.

分析 可得△PAC是Rt△.PBC是Rt△.可得三棱锥P-ABC的外接球的球心、半径,即可求出三棱锥P-ABC的外接球的表面积.

解答 解:∵AP=2,AC=2$\sqrt{2}$,PC=2$\sqrt{3}$,∴AP2+AC2=PC2
∴△PAC是Rt△.
∵PB=2$\sqrt{2}$,BC=2,PC=2$\sqrt{3}$,∴∴△PBC是Rt△.
∴取PC中点O,则有OP=OC=OA=OB=$\sqrt{3}$,
∴O为三棱锥P-ABC的外接球的球心,半径为$\sqrt{3}$.
∴三棱锥P-ABC的外接球的表面积为4πR2=12π.
故答案为:12π

点评 本题考查了三棱锥P-ABC的外接球的表面积,考查学生的计算能力,确定三棱锥P-ABC的外接球的球心、半径是关键.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.$\frac{1-{i}^{3}}{1-i}$=(  )
A.-iB.iC.1+iD.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.将底边长为2的等腰直角三角形ABC沿高线AD折起,使∠BDC=60°,若折起后A、B、C、D四点都在球O的表面上,则球O的体积为$\frac{7\sqrt{21}}{54}π$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知矩阵M=$|\begin{array}{l}{1}&{a}\\{b}&{1}\end{array}|$,N=$|\begin{array}{l}{c}&{2}\\{0}&{d}\end{array}|$,若MN=$|\begin{array}{l}{1}&{0}\\{0}&{1}\end{array}|$,求实数a,b,c,d的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知长方体ABCD-A1B1C1D1中,AB=AD=2.AA1=4,则该长方体外接球的表面积为24π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.表面积为4π的球的半径为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知直线ax+y+1=0与x+(a+$\frac{3}{2}$)y+2=0平行,则实数a=(  )
A.$\frac{1}{2}$B.-2C.$\frac{1}{2}$或-2D.2或-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.将-$\frac{\sqrt{3}}{2}$cosα-$\frac{1}{2}$sinα化成Asin(α+β)(A>0,0<β<2π)的形式,以下式子正确的是(  )
A.sin(α+$\frac{4π}{3}$)B.sin(α+$\frac{7π}{6}$)C.-sin(α+$\frac{π}{3}$)D.sin(α-$\frac{2π}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.命题“?x∈[1,2],x2-2x-a≤0”为真命题的一个充分不必要条件是(  )
A.a≥0B.a≤0C.a≥1D.a≤1

查看答案和解析>>

同步练习册答案