精英家教网 > 高中数学 > 题目详情
12.已知长方体ABCD-A1B1C1D1中,AB=AD=2.AA1=4,则该长方体外接球的表面积为24π.

分析 由长方体的对角线公式,算出长方体对角线AC1的长,从而得到长方体外接球的直径,结合球的表面积公式即可得到,该球的表面积

解答 解:∵长方体ABCD-A1B1C1D1中,AB=3,AD=4,AA1=5,
∴长方体的对角线AC1=$\sqrt{{2}^{2}+{2}^{2}+{4}^{2}}$=2$\sqrt{6}$,∵长方体ABCD-A1B1C1D1的各顶点都在同一球面上,
∴球的一条直径为AC1,可得半径R=$\sqrt{6}$,
因此,该球的表面积为S=4πR2=4π×($\sqrt{6}$)2=24π
故答案为:24π.

点评 本题考查了长方体的对角线公式、长方体的外接球和球的表面积公式等知识,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.二项式(2x+y)6的展开式中,含x2y4的项的系数是60.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知侧棱长为2的正三棱锥S-ABC如图所示,其侧面是顶角为20°的等腰三角形,一只蚂蚁从点A出发,围绕棱锥侧面爬行一周后又回到点A,则蚂蚁爬行的最短路程为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.四面体ABCD各个点都在球面上,AB⊥面BCD,且∠BCD=$\frac{π}{2}$,AB=3,CD=5,BC=4,则该球的体积是$\frac{125\sqrt{2}π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如图,用35个单位正方形拼成一个矩形,点P1、P2、P3、P4以及四个标记为“▲”的点在正方形的顶点处,设集合Ω={P1,P2,P3,P4},点P∈Ω,过P作直线lP,使得不在lP上的“▲”的点分布在lP的两侧.用D1(lP)和D2(lP)分别表示lP一侧和另一侧的“▲”的点到lP的距离之和.若过P的直线lP中有且只有一条满足D1(lP)=D2(lP),则Ω中所有这样的P为P1、P3、P4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.三棱锥P-ABC中,PA=AB=BC=2,PB=AC=2$\sqrt{2}$,PC=2$\sqrt{3}$,则三棱锥P-ABC的外接球的表面积为12π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图是正方体的平面展开图,则在这个正方体中,AM与BN所成角的大小为(  )
A.B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(2-x),x<1}\\{{2}^{x},x≥1}\end{array}\right.$,则f(-2)+f(log26)=(  )
A.2B.6C.8D.14

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设函数f(x)=$\left\{{\begin{array}{l}{{2^x},x≤0}\\{{{log}_3}x,x>0}\end{array}}$,则$f({f({\frac{1}{9}})})$的值是(  )
A.$\frac{1}{4}$B.4C.$\frac{1}{9}$log32D.-4

查看答案和解析>>

同步练习册答案