精英家教网 > 高中数学 > 题目详情
2.设函数f(x)=$\left\{{\begin{array}{l}{{2^x},x≤0}\\{{{log}_3}x,x>0}\end{array}}$,则$f({f({\frac{1}{9}})})$的值是(  )
A.$\frac{1}{4}$B.4C.$\frac{1}{9}$log32D.-4

分析 先求出f($\frac{1}{9}$)=$lo{g}_{3}\frac{1}{9}$=-2,从而$f({f({\frac{1}{9}})})$=f(-2),由此能求出结果.

解答 解:∵函数f(x)=$\left\{{\begin{array}{l}{{2^x},x≤0}\\{{{log}_3}x,x>0}\end{array}}$,
∴f($\frac{1}{9}$)=$lo{g}_{3}\frac{1}{9}$=-2,
$f({f({\frac{1}{9}})})$=f(-2)=2-2=$\frac{1}{4}$.
故选:A.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知长方体ABCD-A1B1C1D1中,AB=AD=2.AA1=4,则该长方体外接球的表面积为24π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数f(x)=ax-1-2(a>0,a≠1)的图象恒过定点A,若点A在直线mx-ny-1=0上,其中m>0,n>0,则$\frac{1}{m}$+$\frac{2}{n}$的最小值为(  )
A.4B.5C.7D.3+2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若(1-2x)2017=a0+a1x+a2x2+…+a2017x2017(x∈R),则$\frac{1}{2}$a1+$\frac{1}{{2}^{2}}$a2+$\frac{1}{{2}^{3}}$a3+…+$\frac{1}{{2}^{2017}}$a2017的值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知MOD函数是一个求余函数,MOD(m,n)表示m除以n的余数,例如MOD(8,3)=2,如图是某个算法的程序框图,若输入m的值为6,则输出i的值为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.命题“?x∈[1,2],x2-2x-a≤0”为真命题的一个充分不必要条件是(  )
A.a≥0B.a≤0C.a≥1D.a≤1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知集合A={x||x-2|≤1},B={x|x2-2mx+m2-4≤0,m∈R}
(1)若A∩B=[2,3],求实数m的值;
(2)若A⊆∁RB,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在△ABC中,若a=2$\sqrt{3},cosC=\frac{1}{3},{S_{△ABC}}=4\sqrt{3}$,则b=3$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)是定义在R上的奇函数,且图象连续不断,对任意0<x1<x2,有$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}>-1$,且f(2)=1,则不等式-3≤f(x)+x≤0的解集为[-2,0].

查看答案和解析>>

同步练习册答案