分析 通过底面三角形BCD求出底面圆的半径DM,判断球心到底面圆的距离OM,求出球O的半径OD,即可求解球O的体积.
解答
解:如图,在△BCD中,BD=1,CD=1,∠BDC=60°,
底面三角形BCD的外接圆圆半径为r,则$\frac{1}{sin6{0}^{0}}=2r$
∴$r=\frac{1}{\sqrt{3}}$
AD是球的弦,DA=1,
∴OM=$\frac{1}{2}AD=\frac{1}{2}$
∴球的半径R=OD=$\sqrt{\frac{1}{3}+\frac{1}{4}}=\sqrt{\frac{7}{12}}$,
∴球O的体积为$\frac{4}{3}π{R}^{3}$=$\frac{7\sqrt{21}}{54}π$.
故答案为:$\frac{7\sqrt{21}}{54}π$![]()
点评 本题考查球的体积的求法,球的内接体,考查空间想象能力以及计算能力.属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$i | C. | -$\frac{1}{2}$ | D. | $\frac{1}{2}$i |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|-x≤x≤4} | B. | {-1,4} | C. | (1,4) | D. | {(-1,4)} |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{64}{3}π$ | B. | $\frac{256}{3}π$ | C. | $\frac{436}{3}π$ | D. | $\frac{2048}{27}\sqrt{3}π$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com