精英家教网 > 高中数学 > 题目详情
11.在一次53.5公里的自行车个人赛中,25名参赛选手的成绩(单位:分钟)的茎叶图如图所示,若用简单随机抽样方法从中选取2人,则这2人成绩的平均数恰为100的概率为$\frac{1}{50}$.

分析 根据题意求出从25人中选取2人的基本事件数,
再计算其中这2人成绩的平均数恰为100的基本事件数,从而求出所求的概率值.

解答 解:根据题意知,从25人中选取2人,基本事件数为${C}_{25}^{2}$=300,
其中这2人成绩的平均数恰为100的基本事件为:
(100,100),(95,105),(95,105),
(95,105),(94,106),(93,107)共6个,
所以,所求的概率为P=$\frac{6}{300}$=$\frac{1}{50}$.
故答案为:$\frac{1}{50}$.

点评 本题考查了茎叶图与古典概型的概率计算问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.双曲线Γ的两焦点分别为F1,F2,若在双曲线Γ上存在点P,使△F1PF2为顶角为120°的等腰三角形,则双曲线Γ的离心率为(  )
A.$\sqrt{2}$+1B.$\sqrt{3}$C.$\frac{\sqrt{3}+1}{2}$D.$\sqrt{5}$-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.命题“有些有理数是无限循环小数,整数是有理数,所以整数是无限循环小数”是假命题,推理错误的原因是(  )
A.使用了“三段论”,但大前提错误B.使用了“三段论”,但小前提错误
C.使用了归纳推理D.使用了类比推理

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.$\frac{1-{i}^{3}}{1-i}$=(  )
A.-iB.iC.1+iD.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某单位共有10名员工,他们某年的收入如表:
员工编号12345678910
年薪(万元)33.5455.56.577.5850
(Ⅰ)从该单位中任取2人,此2人中年薪收入高于5万的人数记为X,求X的分布列和期望;
(Ⅱ)已知员工年薪收入y与工作年限x成正相关关系,若某员工工作第一年至第四年的年薪如表:
 工作年限 1
 年薪(万元) 3.0 4.2 5.6 7.2
预测该员工第五年的年薪为多少?
附:线性回归方程${\;}_{y}^{-}$=bx+a中细数参考公式和参考数据分别为:
${\;}_{b}^{∧}$=$\frac{\sum_{i=1}^{n}{(x}_{i}{-}_{x}^{-})({y}_{i}{-}_{y}^{-})}{\sum_{i=1}^{n}({x}_{i}{-}_{x}^{-})^{2}}$,${\;}_{a}^{∧}$=${\;}_{y}^{-}$-bx,其中${\;}_{x}^{-}$,${\;}_{y}^{-}$为样本均值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知y=sin3x+cos3x,则y′=3sin2xcosx-3sin3x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\sqrt{3}$sin(ωx+φ)(ω>0,-$\frac{π}{2}$≤φ≤$\frac{π}{2}$)的图象关于直线x=$\frac{3π}{2}$对称,且图象上相邻两个最高点的距离为π.
(1)求ω和φ的值;
(2)若f($\frac{α}{2}$)=$\frac{\sqrt{3}}{4}$($\frac{π}{6}$<α<$\frac{2π}{3}$),求cos($α+\frac{3π}{2}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.将底边长为2的等腰直角三角形ABC沿高线AD折起,使∠BDC=60°,若折起后A、B、C、D四点都在球O的表面上,则球O的体积为$\frac{7\sqrt{21}}{54}π$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知直线ax+y+1=0与x+(a+$\frac{3}{2}$)y+2=0平行,则实数a=(  )
A.$\frac{1}{2}$B.-2C.$\frac{1}{2}$或-2D.2或-$\frac{1}{2}$

查看答案和解析>>

同步练习册答案