精英家教网 > 高中数学 > 题目详情
11.已知函数f(x)=$\sqrt{3}$sin(ωx+φ)(ω>0,-$\frac{π}{2}$≤φ≤$\frac{π}{2}$)的图象关于直线x=$\frac{3π}{2}$对称,且图象上相邻两个最高点的距离为π.
(1)求ω和φ的值;
(2)若f($\frac{α}{2}$)=$\frac{\sqrt{3}}{4}$($\frac{π}{6}$<α<$\frac{2π}{3}$),求cos($α+\frac{3π}{2}$)的值.

分析 (1)由函数图象上相邻两个最高点的距离为π,得函数的最小正周期为π,求出ω=2,由函数图象关于直线x=$\frac{3π}{2}$对称,能求出φ=$\frac{π}{2}$.
(2)由f(x)=$\sqrt{3}$sin(2x+$\frac{π}{2}$)=$\sqrt{3}$cos2x,f($\frac{α}{2}$)=$\frac{\sqrt{3}}{4}$($\frac{π}{6}$<α<$\frac{2π}{3}$),求出cosα=$\frac{1}{4}$,sinα=$\frac{\sqrt{15}}{4}$,由此利用诱导公式能求出cos($α+\frac{3π}{2}$).

解答 解:(1)∵函数f(x)=$\sqrt{3}$sin(ωx+φ)(ω>0,-$\frac{π}{2}$≤φ≤$\frac{π}{2}$)图象上相邻两个最高点的距离为π.
∴函数的最小正周期为π,
∴$\frac{2π}{ω}$=π,∵ω>0,∴ω=2,
∵函数f(x)=$\sqrt{3}$sin(ωx+φ)(ω>0,-$\frac{π}{2}$≤φ≤$\frac{π}{2}$)的图象关于直线x=$\frac{3π}{2}$对称,
∴$2×\frac{3π}{2}+$φ=kπ+$\frac{π}{2}$,k∈Z,
∵-$\frac{π}{2}$≤φ≤$\frac{π}{2}$,∴φ=$\frac{π}{2}$.
(2)由(1)知f(x)=$\sqrt{3}$sin(2x+$\frac{π}{2}$)=$\sqrt{3}$cos2x,
∵f($\frac{α}{2}$)=$\frac{\sqrt{3}}{4}$($\frac{π}{6}$<α<$\frac{2π}{3}$),
∴f($\frac{α}{2}$)=$\sqrt{3}cosα$=$\frac{\sqrt{3}}{4}$,∴cosα=$\frac{1}{4}$,sinα=$\sqrt{1-\frac{1}{16}}$=$\frac{\sqrt{15}}{4}$,
∴cos($α+\frac{3π}{2}$)=sinα=$\frac{\sqrt{15}}{4}$.

点评 本题考查三角函数中参数及三角函数值的求法,考查三角函数的图象、诱导公式、同角三角函数关系式等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=b+logax(a>0,且a≠1)的图象过点(16,3),且点A(-4,-1)关于坐标原点O的对称点B也在f(x)的图象上.
(1)求函数f(x)的解析式;
(2)令g(x)=f(x)+f(1-x),求函数g(x)的最大值及取得最大值时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.二项式(2x+y)6的展开式中,含x2y4的项的系数是60.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在一次53.5公里的自行车个人赛中,25名参赛选手的成绩(单位:分钟)的茎叶图如图所示,若用简单随机抽样方法从中选取2人,则这2人成绩的平均数恰为100的概率为$\frac{1}{50}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知一个棱长为2的正方体,被一个平面截后所得几何体的三视图如图所示,则该几何体的体积是(  )
A.$\frac{14}{3}$B.$\frac{17}{3}$C.$\frac{20}{3}$D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设集合A={x|x2-3x-4≤0},B={-1,4},则A∩B=(  )
A.{x|-x≤x≤4}B.{-1,4}C.(1,4)D.{(-1,4)}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知侧棱长为2的正三棱锥S-ABC如图所示,其侧面是顶角为20°的等腰三角形,一只蚂蚁从点A出发,围绕棱锥侧面爬行一周后又回到点A,则蚂蚁爬行的最短路程为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.四面体ABCD各个点都在球面上,AB⊥面BCD,且∠BCD=$\frac{π}{2}$,AB=3,CD=5,BC=4,则该球的体积是$\frac{125\sqrt{2}π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(2-x),x<1}\\{{2}^{x},x≥1}\end{array}\right.$,则f(-2)+f(log26)=(  )
A.2B.6C.8D.14

查看答案和解析>>

同步练习册答案