精英家教网 > 高中数学 > 题目详情
6.已知一个棱长为2的正方体,被一个平面截后所得几何体的三视图如图所示,则该几何体的体积是(  )
A.$\frac{14}{3}$B.$\frac{17}{3}$C.$\frac{20}{3}$D.8

分析 由三视图得到几何体是正方体截去棱台后的几何体,根据图中数据计算体积.

解答 解:由三视图得到几何体是正方体截去棱台后的几何体,体积为${2}^{3}-\frac{1}{3}×2×(\frac{1}{2}×2×2+\frac{1}{2}×1×1+\sqrt{2×\frac{1}{2}})$=$\frac{17}{3}$;
故选:B

点评 本题考查了几何体的三视图;关键是正确还原几何体,进一步根据三视图数据求体积.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知圆C满足:①圆心在第一象限,截y轴所得弦长为2,②被x轴分成两段圆弧,其弧长的比为3:1,③圆心到直线x-2y=0的距离为$\frac{\sqrt{5}}{5}$
(Ⅰ)求圆C的方程
(Ⅱ)若点M是直线x=3上的动点,过点M分别做圆C的两条切线,切点分别为P,Q,求证:直线PQ过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知集合A={x|2x-1>0},B={-1,0,1,2},则(∁UA)∩B(  )
A.{1,2}B.{0,1}C.{-1,0}D.{-1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某单位共有10名员工,他们某年的收入如表:
员工编号12345678910
年薪(万元)33.5455.56.577.5850
(Ⅰ)从该单位中任取2人,此2人中年薪收入高于5万的人数记为X,求X的分布列和期望;
(Ⅱ)已知员工年薪收入y与工作年限x成正相关关系,若某员工工作第一年至第四年的年薪如表:
 工作年限 1
 年薪(万元) 3.0 4.2 5.6 7.2
预测该员工第五年的年薪为多少?
附:线性回归方程${\;}_{y}^{-}$=bx+a中细数参考公式和参考数据分别为:
${\;}_{b}^{∧}$=$\frac{\sum_{i=1}^{n}{(x}_{i}{-}_{x}^{-})({y}_{i}{-}_{y}^{-})}{\sum_{i=1}^{n}({x}_{i}{-}_{x}^{-})^{2}}$,${\;}_{a}^{∧}$=${\;}_{y}^{-}$-bx,其中${\;}_{x}^{-}$,${\;}_{y}^{-}$为样本均值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.某三棱锥的三视图如图所示,则该三棱锥的外接球表面积是(  )
A.$\frac{13π}{4}$B.$\frac{25π}{4}$C.$\frac{29π}{4}$D.$\frac{41π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\sqrt{3}$sin(ωx+φ)(ω>0,-$\frac{π}{2}$≤φ≤$\frac{π}{2}$)的图象关于直线x=$\frac{3π}{2}$对称,且图象上相邻两个最高点的距离为π.
(1)求ω和φ的值;
(2)若f($\frac{α}{2}$)=$\frac{\sqrt{3}}{4}$($\frac{π}{6}$<α<$\frac{2π}{3}$),求cos($α+\frac{3π}{2}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知定义在R上的奇函数f(x),当x<0时,f(x)=2x-3.若f(a)=7,实数a的值是2$\end{array}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在锐角三角形ABC中,角A,B,C的对边分别为a,b,c,已知 $\frac{c}{c-2b}=\frac{cos(π+A)}{{sin(\frac{π}{2}+C)}}$
(1)求角A的大小;   
(2)若b+c=4,求三角形ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知X~N(5,1),若P(5<X≤6)=0.3413,P(3<X≤7)=0.9544,则P(6<X≤7)=(  )
A.0.3413B.0.4772C.0.8185D.0.1359

查看答案和解析>>

同步练习册答案