精英家教网 > 高中数学 > 题目详情
1.某三棱锥的三视图如图所示,则该三棱锥的外接球表面积是(  )
A.$\frac{13π}{4}$B.$\frac{25π}{4}$C.$\frac{29π}{4}$D.$\frac{41π}{4}$

分析 根据几何体的三视图,得出该几何体是侧棱垂直于底面的三棱锥,画出图形,结合图形求出它的表面积.

解答 解:依三棱锥的三视图可得三棱锥S-ABC,SA⊥平面ABC,SA=1
AB=AC=$\frac{4}{\sqrt{3}}$,BC=2,

如图,M为△ABC的外接圆的圆心,外接圆半径r,则r2=(2-r)2+12
可得r=$\frac{5}{4}$
设三棱锥的外接球的球心为O,
取SA的中点H,则OH⊥SA.
三棱锥的外接球的半径R=OS=$\sqrt{O{H}^{2}+S{H}^{2}}$=$\frac{\sqrt{29}}{4}$
则该三棱锥的外接球表面积4πR2=$\frac{29π}{4}$.
故选:C
                                          

点评 本题考查了空间几何体三视图的应用问题,解题时应根据三视图画出几何图形,求出各棱长,找到球心,求出版局是关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.α,β,γ是三个平面,m,n是两条直线,下列命题正确的是(  )
A.若α∩β=m,n?α,m⊥n,则α⊥β
B.若α⊥β,α∩β=m,α∩γ=n,则m⊥n
C.若m⊥α,n⊥β,m∥n,则α∥β
D.若m不垂直平面,则m不可能垂直于平面α内的无数条直线

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数y=Asin(ωx+φ)$({A>0,|φ|<\frac{π}{2}})$部分图象如图,则函数解析式为$y=2sin(\frac{1}{3}x-\frac{π}{6})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在一次抽样调査中测得样本的6组数据,得到一个变量y关于x的回归方程模型,其对应的数值如表
x234567
y3.002.482.081.861.481.10
(Ⅰ)请用相关系数r加以说明y与x之间存在线性相关关系(当|r|>0.81时,说明y与x之间具有线性相关关系);
(Ⅱ)根据(I )的判断结果,建立y关于x的回归方程并预测当x=9时,对应的y值为多少(b精确到0.01)
附参考公式:回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$中斜率和截距的最小二乘法估计公式分别为:
$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$,相关系数r公式为:r=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sqrt{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}}$
参考数据:$\sum_{i=1}^{n}{x}_{i}{y}_{i}$=47.64,$\sum_{i=1}^{n}{{x}_{i}}^{2}$=139,$\sqrt{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=4.18,$\sqrt{\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}$=1.53.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.曲线y=x3+x-a在点P0处的切线平行于直线y=4x,则点P0的横坐标是±1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知一个棱长为2的正方体,被一个平面截后所得几何体的三视图如图所示,则该几何体的体积是(  )
A.$\frac{14}{3}$B.$\frac{17}{3}$C.$\frac{20}{3}$D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求下列函数的导数.
(])y=$\frac{{x}^{3}-1}{{x}^{2}+1}$;
(2)y=x2+sin$\frac{x}{2}$cos$\frac{x}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知在△ABC中,三内角A,B,C所对的边分别为a,b,c,且$C=\frac{π}{3}$.
(Ⅰ)若c2=4a2-ab,求$\frac{sinB}{sinA}$;
(Ⅱ)求sinA•sinB的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图,在正方体ABCD-A1B1C1D1中,E为线段A1C1的中点,则异面直线DE与B1C所成角的大小为(  )
A.$\frac{π}{3}$B.$\frac{π}{4}$C.$\frac{π}{6}$D.$\frac{π}{12}$

查看答案和解析>>

同步练习册答案