分析 (Ⅰ)设出圆P的圆心坐标,可得到圆P截x轴所得劣弧对的圆心角为90°,根据垂径定理得到圆截x轴的弦长,找出r与b的关系式,利用垂径定理得到r与a的关系式,两个关系式联立得到a与b的关系式;然后利用点到直线的距离公式求出P到直线x-2y=0的距离,让其等于$\frac{\sqrt{5}}{5}$,得到a与b的关系式,将两个a与b的关系式联立即可求出a与b的值,得到圆心P的坐标,然后利用a与b的值求出圆的半径r,根据圆心和半径写出圆的方程即可.
(Ⅱ)设点M(3,t),MP2=MC2-r2=t2-2t+3
以M为圆心,MP为半径的圆的方程为(x-3)2+(y-t)2=t2-2t+3…①
又(x-1)2+(y-1)2=2…②.
由①②得2x+(t-1)y-3-t=0,即(2x-y-3)+t(y-1)=0,可得直线PQ过定点(2,1)
解答 解:设圆P的圆心为P(a,b),半径为r,则点P到x轴,y轴的距离分别为|b|,|a|.
由题设知圆P截x轴所得劣弧对的圆心角为90°,
知圆P截x轴所得的弦长为$\sqrt{2}r$.故r2=2b2
又圆P被y轴所截得的弦长为2,所以有r2=a2+1.从而得2b2-a2=1;
又因为P(a,b)到直线x-2y=0的距离为$\frac{\sqrt{5}}{5}$,所以d=$\frac{|a-2b|}{\sqrt{5}}$=$\frac{\sqrt{5}}{5}$,即有a-2b=±1,
∴$\left\{\begin{array}{l}{2{b}^{2}-{a}^{2}=1}\\{a-2b=1}\end{array}\right.$或$\left\{\begin{array}{l}{2{b}^{2}-{a}^{2}=1}\\{a-2b=-1}\end{array}\right.$
解方程组得$\left\{\begin{array}{l}{a=1}\\{b=1}\end{array}\right.$或$\left\{\begin{array}{l}{a=-1}\\{b=-1}\end{array}\right.$,于是r2=2b2=2,
∵圆心在第一象限
所求圆的方程是(x-1)2+(y-1)2=2.
(Ⅱ)设点M(3,t),MP2=MC2-r2=t2-2t+3
以M为圆心,MP为半径的圆的方程为(x-3)2+(y-t)2=t2-2t+3…①
又(x-1)2+(y-1)2=2…②.
由①②得2x+(t-1)y-3-t=0,即(2x-y-3)+t(y-1)=0
∴直线PQ过定点(2,1)
点评 本小题主要考查轨迹的问题、圆的相交弦问题,考查综合运用知识建立曲线方程的能力,是一道中档题.
科目:高中数学 来源: 题型:选择题
| A. | 平均数为62.5 | B. | 中位数为62.5 | C. | 众数为60和70 | D. | 以上都不对 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若α∩β=m,n?α,m⊥n,则α⊥β | |
| B. | 若α⊥β,α∩β=m,α∩γ=n,则m⊥n | |
| C. | 若m⊥α,n⊥β,m∥n,则α∥β | |
| D. | 若m不垂直平面,则m不可能垂直于平面α内的无数条直线 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{14}{3}$ | B. | $\frac{17}{3}$ | C. | $\frac{20}{3}$ | D. | 8 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com