精英家教网 > 高中数学 > 题目详情
8.已知圆C满足:①圆心在第一象限,截y轴所得弦长为2,②被x轴分成两段圆弧,其弧长的比为3:1,③圆心到直线x-2y=0的距离为$\frac{\sqrt{5}}{5}$
(Ⅰ)求圆C的方程
(Ⅱ)若点M是直线x=3上的动点,过点M分别做圆C的两条切线,切点分别为P,Q,求证:直线PQ过定点.

分析 (Ⅰ)设出圆P的圆心坐标,可得到圆P截x轴所得劣弧对的圆心角为90°,根据垂径定理得到圆截x轴的弦长,找出r与b的关系式,利用垂径定理得到r与a的关系式,两个关系式联立得到a与b的关系式;然后利用点到直线的距离公式求出P到直线x-2y=0的距离,让其等于$\frac{\sqrt{5}}{5}$,得到a与b的关系式,将两个a与b的关系式联立即可求出a与b的值,得到圆心P的坐标,然后利用a与b的值求出圆的半径r,根据圆心和半径写出圆的方程即可.
(Ⅱ)设点M(3,t),MP2=MC2-r2=t2-2t+3
以M为圆心,MP为半径的圆的方程为(x-3)2+(y-t)2=t2-2t+3…①
又(x-1)2+(y-1)2=2…②.
由①②得2x+(t-1)y-3-t=0,即(2x-y-3)+t(y-1)=0,可得直线PQ过定点(2,1)

解答 解:设圆P的圆心为P(a,b),半径为r,则点P到x轴,y轴的距离分别为|b|,|a|.
由题设知圆P截x轴所得劣弧对的圆心角为90°,
知圆P截x轴所得的弦长为$\sqrt{2}r$.故r2=2b2
又圆P被y轴所截得的弦长为2,所以有r2=a2+1.从而得2b2-a2=1;
又因为P(a,b)到直线x-2y=0的距离为$\frac{\sqrt{5}}{5}$,所以d=$\frac{|a-2b|}{\sqrt{5}}$=$\frac{\sqrt{5}}{5}$,即有a-2b=±1,
∴$\left\{\begin{array}{l}{2{b}^{2}-{a}^{2}=1}\\{a-2b=1}\end{array}\right.$或$\left\{\begin{array}{l}{2{b}^{2}-{a}^{2}=1}\\{a-2b=-1}\end{array}\right.$
解方程组得$\left\{\begin{array}{l}{a=1}\\{b=1}\end{array}\right.$或$\left\{\begin{array}{l}{a=-1}\\{b=-1}\end{array}\right.$,于是r2=2b2=2,
∵圆心在第一象限
所求圆的方程是(x-1)2+(y-1)2=2.
(Ⅱ)设点M(3,t),MP2=MC2-r2=t2-2t+3
以M为圆心,MP为半径的圆的方程为(x-3)2+(y-t)2=t2-2t+3…①
又(x-1)2+(y-1)2=2…②.
由①②得2x+(t-1)y-3-t=0,即(2x-y-3)+t(y-1)=0
∴直线PQ过定点(2,1)

点评 本小题主要考查轨迹的问题、圆的相交弦问题,考查综合运用知识建立曲线方程的能力,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.如图是某路段的一个检测点对200辆汽车的车速进行检测所得结果的频率分布直方图,则下列说法正确的是(  )
A.平均数为62.5B.中位数为62.5C.众数为60和70D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.某四棱锥的三视图如图所示,该四棱锥的体积为(  )
A.17B.22C.8D.22+2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=lnx-mx+m.
(1)求函数f(x)的单调区间;
(2)若f(x)≤0在x∈(0,+∞)上恒成立,求实数m的取值范围;
(3)在(2)的条件下,对任意的0<a<b,求证:$\frac{f(b)-f(a)}{b-a}$<$\frac{1}{a(a+1)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.α,β,γ是三个平面,m,n是两条直线,下列命题正确的是(  )
A.若α∩β=m,n?α,m⊥n,则α⊥β
B.若α⊥β,α∩β=m,α∩γ=n,则m⊥n
C.若m⊥α,n⊥β,m∥n,则α∥β
D.若m不垂直平面,则m不可能垂直于平面α内的无数条直线

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=b+logax(a>0,且a≠1)的图象过点(16,3),且点A(-4,-1)关于坐标原点O的对称点B也在f(x)的图象上.
(1)求函数f(x)的解析式;
(2)令g(x)=f(x)+f(1-x),求函数g(x)的最大值及取得最大值时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若复数(1-i)(a+i)在复平面内对应的点在第二象限,则实数a的取值范围为(-∞,-1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知2a=$\frac{1}{2}$,lgx=a,则x=$\frac{1}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知一个棱长为2的正方体,被一个平面截后所得几何体的三视图如图所示,则该几何体的体积是(  )
A.$\frac{14}{3}$B.$\frac{17}{3}$C.$\frac{20}{3}$D.8

查看答案和解析>>

同步练习册答案