精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=b+logax(a>0,且a≠1)的图象过点(16,3),且点A(-4,-1)关于坐标原点O的对称点B也在f(x)的图象上.
(1)求函数f(x)的解析式;
(2)令g(x)=f(x)+f(1-x),求函数g(x)的最大值及取得最大值时x的值.

分析 (1)求出A关于O对称的点(4,1),将(4,1),(16,3)分别代入f(x),解方程可得a,b的值,即可得到f(x)的解析式;
(2)求出g(x)的解析式,由对数的运算法则和基本不等式,即可得到所求最大值和相应的x的值.

解答 解:(1)函数f(x)=b+logax(a>0,且a≠1)的图象过点(16,3),
可得b+loga16=3,
点A(-4,-1)关于坐标原点O的对称点B(4,1)也在f(x)的图象上,
可得b+loga4=1,
解得a=2,b=-1,
则f(x)=log2x-1;
(2)g(x)=f(x)+f(1-x)=log2x+log2(1-x)-2(0<x<1),
=log2[x(1-x)]-2≤log2($\frac{x+1-x}{2}$)2-2=-2-2=-4,
当且仅当x=1-x,即x=$\frac{1}{2}$时,g(x)取得最大值,且为-4.

点评 本题考查函数的解析式的求法,注意运用待定系数法,考查函数的最值的求法,注意运用对数的运算性质和基本不等式,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)是R上的偶函数,g(x)是R上的奇函数,且g(x)=f(x-1),g(1)=2,则f(2014)的值为(  )
A.2B.0C.-2D.±2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知抛物线C1:y2=2px(p>0)的焦点为F,抛物线上存在一点G到焦点的距离为3,且点G在圆C:x2+y2=9上.
(Ⅰ)求抛物线C1的方程;
(Ⅱ)已知椭圆C2:$\frac{x^2}{m^2}+\frac{y^2}{n^2}$=1(m>n>0)的一个焦点与抛物线C1的焦点重合,且离心率为$\frac{1}{2}$.直线l:y=kx-4交椭圆C2于A、B两个不同的点,若原点O在以线段AB为直径的圆的外部,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.双曲线Γ的两焦点分别为F1,F2,若在双曲线Γ上存在点P,使△F1PF2为顶角为120°的等腰三角形,则双曲线Γ的离心率为(  )
A.$\sqrt{2}$+1B.$\sqrt{3}$C.$\frac{\sqrt{3}+1}{2}$D.$\sqrt{5}$-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知圆C满足:①圆心在第一象限,截y轴所得弦长为2,②被x轴分成两段圆弧,其弧长的比为3:1,③圆心到直线x-2y=0的距离为$\frac{\sqrt{5}}{5}$
(Ⅰ)求圆C的方程
(Ⅱ)若点M是直线x=3上的动点,过点M分别做圆C的两条切线,切点分别为P,Q,求证:直线PQ过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数y=f(x)的导函数的大致图象如图所示,则函数y=f(x)的图象可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆的两个焦点坐标分别是(-$\sqrt{2}$,0),($\sqrt{2}$,0),并且经过点($\frac{\sqrt{2}}{2}$,$\frac{\sqrt{30}}{6}$).
(1)求椭圆的标准方程;
(2)斜率为k的直线l经过点(0,-2),且与椭圆交于不同的两点A、B,当△OAB面积为$\frac{\sqrt{3}}{2}$时,求直线l的斜率k.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.命题“有些有理数是无限循环小数,整数是有理数,所以整数是无限循环小数”是假命题,推理错误的原因是(  )
A.使用了“三段论”,但大前提错误B.使用了“三段论”,但小前提错误
C.使用了归纳推理D.使用了类比推理

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\sqrt{3}$sin(ωx+φ)(ω>0,-$\frac{π}{2}$≤φ≤$\frac{π}{2}$)的图象关于直线x=$\frac{3π}{2}$对称,且图象上相邻两个最高点的距离为π.
(1)求ω和φ的值;
(2)若f($\frac{α}{2}$)=$\frac{\sqrt{3}}{4}$($\frac{π}{6}$<α<$\frac{2π}{3}$),求cos($α+\frac{3π}{2}$)的值.

查看答案和解析>>

同步练习册答案