精英家教网 > 高中数学 > 题目详情
18.函数y=f(x)的导函数的大致图象如图所示,则函数y=f(x)的图象可能是(  )
A.B.C.D.

分析 利用导函数的符号与函数的单调性的关系,判断函数的图象即可.

解答 解:由题意函数y=f(x)的导函数的大致图象如图所示可得,导函数的符号为负,正,负,正;
对应函数的单调性为:减函数,增函数,减函数,增函数.极值点两个大于0,一个小于0,
故选:B.

点评 本题考查函数的图象的判断,函数的单调性与导函数的关系,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.如图,在三棱柱 ABC-A1B1C1中,CC1丄底面ABC,AC=BC=2,AB=2$\sqrt{2}$,CC1=4,M是棱CC1上一点
(1)求证:BC⊥AM
(2)若二面角A-MB1-C的大小为$\frac{π}{4}$,求CM的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知向量$\overrightarrow{m}$=($\sqrt{3}$sinωx-cosωx,1),$\overrightarrow{n}$=(cosωx,$\frac{1}{2}$),设函数f(x)=$\overrightarrow{m}•\overrightarrow{n}$,
若函数f(x)的图象关于直线x=$\frac{π}{3}$对称且ω∈[0,2]
(Ⅰ) 求函数f(x)的单调递减区间;
(Ⅱ) 在△ABC中,角A,B,C的对边分别a,b,c,若a=$\sqrt{3}$,f(A)=1,求b+c的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知α,β为两个不同平面,m,n为两条不同直线,以下说法正确的是(  )
A.若α∥β,m?α,n?β,则m∥nB.若m∥n,n?α,则m∥α
C.若α丄β,α∩β=m,n⊥m,n∥α,则n⊥βD.若m丄n,m∥α,则n⊥α

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=b+logax(a>0,且a≠1)的图象过点(16,3),且点A(-4,-1)关于坐标原点O的对称点B也在f(x)的图象上.
(1)求函数f(x)的解析式;
(2)令g(x)=f(x)+f(1-x),求函数g(x)的最大值及取得最大值时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.直三棱柱ABC-A1B1C1中,∠BCA=90°,CA=CC1=2CB,则直线BC1与直线AB1所成角的余弦值为(  )
A.$\frac{2\sqrt{5}}{5}$B.$\frac{\sqrt{5}}{3}$C.$\frac{3}{5}$D.$\frac{\sqrt{5}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知a=${∫}_{1}^{e}\frac{1}{x}$dx(其中e是自然对数的底数),z=$\frac{i}{a-i}$(其中i是虚数单位),则复数z的虚部为(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$iC.-$\frac{1}{2}$D.$\frac{1}{2}$i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设min{p,q,r}表示p,q,r三者中较小的一个,若函数f(x)=min{x2,2x,-x+20},则当x∈(l,6)时,f(x)的值域是(  )
A.(1,14)B.(2,14)C.(1,16]D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设集合A={x|x2-3x-4≤0},B={-1,4},则A∩B=(  )
A.{x|-x≤x≤4}B.{-1,4}C.(1,4)D.{(-1,4)}

查看答案和解析>>

同步练习册答案