精英家教网 > 高中数学 > 题目详情
3.直三棱柱ABC-A1B1C1中,∠BCA=90°,CA=CC1=2CB,则直线BC1与直线AB1所成角的余弦值为(  )
A.$\frac{2\sqrt{5}}{5}$B.$\frac{\sqrt{5}}{3}$C.$\frac{3}{5}$D.$\frac{\sqrt{5}}{5}$

分析 以C1为原点,C1B1为x轴,C1A1为y轴,C1C为z轴,建立空间直角坐标系,利用向量法能求出直线BC1与直线AB1所成角的余弦值.

解答 解:如图,∵直三棱柱ABC-A1B1C1中,∠BCA=90°,CA=CC1=2CB,
∴以C1为原点,C1B1为x轴,C1A1为y轴,C1C为z轴,建立空间直角坐标系,
设CA=2,则B(1,0,2),C1(0,0,0),A(0,2,2),B1(1,0,0),
$\overrightarrow{B{C}_{1}}$=(-1,0,-2),$\overrightarrow{A{B}_{1}}$=(1,-2,-2),
设直线BC1与直线AB1所成角为θ,
则cosθ=$\frac{|\overrightarrow{B{C}_{1}}•\overrightarrow{A{B}_{1}}|}{|\overrightarrow{B{C}_{1}}|•|\overrightarrow{A{B}_{1}}|}$=$\frac{3}{\sqrt{5}•\sqrt{9}}$=$\frac{\sqrt{5}}{5}$.
故选:D.

点评 本题考查异面直线所成角的大小的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知变量X服从正态分布N(4,σ2)且P(X≥2)=0.6,则P(X>6)=(  )
A.0.4B.0.3C.0.2D.0.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.某市重点中学奥数培训班共有15人,分为两个小组,在一次阶段考试中两个小组成绩的茎叶图如图所示,甲组学生成绩的极差是m,乙组学生成绩的中位数是86,则m+n的值是21.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.求下列函数的最值:
(1)已知x>0,求$y=2-x-\frac{4}{x}$的最大值;
(2)已知$0<x<\frac{1}{2}$,求$y=\frac{1}{2}x(1-2x)$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数y=f(x)的导函数的大致图象如图所示,则函数y=f(x)的图象可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知抛物线y2=2px(p>0),过点T(p,0)且斜率为1的直线与抛物线交于A,B两点,则直线OA,OB的斜率之积为(O为坐标原点)-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数f(x)=(x2+ax-1)ex的一个极值点为x=1,则f(x)的极大值为(  )
A.-1B.-2e-2C.5e-2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.由下列各组命题构成的复合命题中,“p 或 q”为真,“p 且 q”为假,“非 p”为真的一组为(  )
A.p:3 为偶数,q:4 为奇数B.p:π<3,q:5>3
C.p:a∈{a,b},q:{a}⊆{a,b}D.p:Q⊆R,q:N=Z

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知二阶矩阵M有特征值λ=8及其对应的一个特征向量$\overrightarrow e=[\begin{array}{l}-1\\-1\end{array}]$,并且矩阵M对应的变换将点A(-1,2)变换成A'(-2,4).
(1)求矩阵M;
(2)设直线l在M-1对应的变换作用下得到了直线m:x-y=6,求l的方程.

查看答案和解析>>

同步练习册答案