精英家教网 > 高中数学 > 题目详情
1.已知二阶矩阵M有特征值λ=8及其对应的一个特征向量$\overrightarrow e=[\begin{array}{l}-1\\-1\end{array}]$,并且矩阵M对应的变换将点A(-1,2)变换成A'(-2,4).
(1)求矩阵M;
(2)设直线l在M-1对应的变换作用下得到了直线m:x-y=6,求l的方程.

分析 (1)利用待定系数法,根据矩阵的乘法,建立方程组,即可求矩阵M;
(2)求得逆矩阵M-1,根据矩阵变换特点,写出两对坐标之间的关系,把已知的点的坐标代入得到直线的方程,得到结果.

解答 解:(1)设二阶矩阵M=$[\begin{array}{l}{a}&{b}\\{c}&{d}\end{array}]$,由M$\overrightarrow{e}$=λ$\overrightarrow{e}$,
即$[\begin{array}{l}{a}&{b}\\{c}&{d}\end{array}]$$[\begin{array}{l}{-1}\\{-1}\end{array}]$=8$[\begin{array}{l}{-1}\\{-1}\end{array}]$,
则$\left\{\begin{array}{l}{a+b=8}\\{c+d=8}\end{array}\right.$,由$[\begin{array}{l}{a}&{b}\\{c}&{d}\end{array}]$$[\begin{array}{l}{-1}\\{2}\end{array}]$=$[\begin{array}{l}{-2}\\{4}\end{array}]$,则$\left\{\begin{array}{l}{-a+2b=-2}\\{-c+2d=4}\end{array}\right.$,
解得:a=6,b=2,c=4,d=4,
则M=$[\begin{array}{l}{6}&{2}\\{4}&{4}\end{array}]$,
(2)由M-1=$[\begin{array}{l}{\frac{4}{24-8}}&{\frac{-2}{24-8}}\\{\frac{-4}{24-8}}&{\frac{6}{24-8}}\end{array}]$=$[\begin{array}{l}{\frac{1}{4}}&{-\frac{1}{8}}\\{-\frac{1}{4}}&{\frac{3}{8}}\end{array}]$,
设直线l上任意一点(x,y)在M-1对应的变换作用下得到(x1,y1),
则$[\begin{array}{l}{\frac{1}{4}}&{-\frac{1}{8}}\\{-\frac{1}{4}}&{\frac{3}{8}}\end{array}]$$[\begin{array}{l}{x}\\{y}\end{array}]$=$[\begin{array}{l}{{x}_{1}}\\{{y}_{1}}\end{array}]$,即$\left\{\begin{array}{l}{{x}_{1}=\frac{2x-y}{8}}\\{{y}_{1}=\frac{-2x+3y}{8}}\end{array}\right.$,
代入x1-y1=6,整理得:x-y=12,
∴直线l的方程为x-y-12=0.

点评 本题主要考查二阶矩阵的变换,逆矩阵的求法,考查运算求解能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.直三棱柱ABC-A1B1C1中,∠BCA=90°,CA=CC1=2CB,则直线BC1与直线AB1所成角的余弦值为(  )
A.$\frac{2\sqrt{5}}{5}$B.$\frac{\sqrt{5}}{3}$C.$\frac{3}{5}$D.$\frac{\sqrt{5}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知三棱锥A-BCD中,AD⊥平面BCD,AD=BD=CD=1,E是BC中点,则直线AE与CD所成角的余弦值为(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{5}}{4}$C.$\frac{\sqrt{6}}{6}$D.$\frac{3\sqrt{2}}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知圆内接四边形ABCD,延长CD、BA交于E,且CD=AE,CE=12,EB=24,DA⊥EB,则AC=4$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设集合A={x|x2-3x-4≤0},B={-1,4},则A∩B=(  )
A.{x|-x≤x≤4}B.{-1,4}C.(1,4)D.{(-1,4)}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.三椎体P-ABC中,PA=PB=$\sqrt{3}$,PC=2,且PA,PB,PC两两垂直,则此三棱锥外接球表面积是10π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.三棱锥S-ABC中,侧棱SA⊥底面ABC,AB=5,BC=8,∠B=60°,$SA=2\sqrt{5}$,则该三棱锥的外接球的表面积为(  )
A.$\frac{64}{3}π$B.$\frac{256}{3}π$C.$\frac{436}{3}π$D.$\frac{2048}{27}\sqrt{3}π$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.一个正三棱柱顶点都在球面上,正三棱柱的底面是正三角形,正三角形的边长是3,正三棱柱的体积是$\frac{{9\sqrt{3}}}{2}$,则球的体积是$\frac{32π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知抛物线y2=x的焦点是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{3}$=1的一个焦点,则椭圆的离心率为(  )
A.$\frac{\sqrt{37}}{37}$B.$\frac{\sqrt{13}}{13}$C.$\frac{1}{4}$D.$\frac{1}{7}$

查看答案和解析>>

同步练习册答案