| A. | $\sqrt{2}$+1 | B. | $\sqrt{3}$ | C. | $\frac{\sqrt{3}+1}{2}$ | D. | $\sqrt{5}$-1 |
分析 由题可知,等腰三角形的底为PF1,等腰三角形的腰F1F2=PF2=2c,可得P的坐标,代入双曲线方程,进而计算可得结论.
解答
解:由题双曲线Γ的两焦点分别为F1,F2,若在双曲线Γ上存在点P,使△F1PF2为顶角为120°的等腰三角形,
不妨等腰三角形的底为PF1,等腰三角形的腰F1F2=PF2=2c,经过F2的直线与双曲线的交点为p,直线的斜率为:$\sqrt{3}$
∴P(2c,$\sqrt{3}$c)
代入双曲线方程可得$\frac{4{c}^{2}}{{a}^{2}}$-$\frac{3{c}^{2}}{{b}^{2}}$=1,
∴4e4-8e2+1=0,
∴e=$\frac{\sqrt{3}+1}{2}$.
故选:C.
点评 本题考查求双曲线的离心率,考查分析问题、解决问题的能力,注意解题方法的积累,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\frac{11}{6}$ | C. | $\frac{5}{6}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若α∥β,m?α,n?β,则m∥n | B. | 若m∥n,n?α,则m∥α | ||
| C. | 若α丄β,α∩β=m,n⊥m,n∥α,则n⊥β | D. | 若m丄n,m∥α,则n⊥α |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$i | C. | -$\frac{1}{2}$ | D. | $\frac{1}{2}$i |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com