精英家教网 > 高中数学 > 题目详情
9.如图是某路段的一个检测点对200辆汽车的车速进行检测所得结果的频率分布直方图,则下列说法正确的是(  )
A.平均数为62.5B.中位数为62.5C.众数为60和70D.以上都不对

分析 由频率分布直方图分别求出平均数、中位数、众数,由此能求出结果.

解答 解:由频率分布直方图得:
平均数为:45×0.01×10+55×0.03×10+65×0.04×10+75×0.02×10=62,故A错误;
∵[40,60)的频率为(0.01+0.03)×10=0.4,[60,70)的频率为0.04×10=0.4,
∴中位数为:60+$\frac{0.5-0.4}{0.4}×10$=62.5,故B正确;
众数为:$\frac{60+70}{2}$=65,故C错误;
由B正确,知D错误.
故选:B.

点评 本题考查频率分布直方图的应用,是基础题,解题时要认真审题,注意频率分布直方图的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.某单位安排甲、乙、丙三人在某月1日至12日值班,每人4天.
甲说:我在1日和3日都有值班;
乙说:我在7日和8日都有值班;
丙说:我们三人各自值班的日期之和相等,据此可判断丙必定值班的日期是(  )
A.2日和5日B.5日和6日C.6日和11日D.4日和11日

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=x2-x-axlnx(a∈R),g(x)=$\frac{f(x)}{x}$.
(Ⅰ)讨论g(x)的单调区间与极值;
(Ⅱ)不论a取何值,函数f(x)与g(x)总交于一定点,求证:两函数在此点处的切线重合;
(Ⅲ)若a<0,对于?x1∈[1,e],总?x2∈[e,e2]使得f(x1)≤g(x2)成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知两个正数a,b的等差中项为3,则ab的最大值为(  )
A.$\frac{3}{2}$B.$\frac{9}{4}$C.3D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图,ABCDEF是圆心为O,半径为1的圆内接正六边形,将一颗豆子随机地扔到该圆内,用M表示事件“豆子落在正六边形内”,用N表示事件“豆子落在扇形AOF内(阴影部分)”,则P(N|M)=(  )
A.$\frac{1}{3}$B.$\frac{1}{3π}$C.$\frac{1}{6}$D.$\frac{1}{6π}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)是R上的偶函数,g(x)是R上的奇函数,且g(x)=f(x-1),g(1)=2,则f(2014)的值为(  )
A.2B.0C.-2D.±2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知(2x2+a)($\frac{2}{{x}^{2}}$-1)5的展开式的各项系数之和为3.
(1)求a的值;
(2)求(2x2+a)($\frac{2}{{x}^{2}}$-1)5的展开式的常数项.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”,将底面为矩形,一条侧棱垂直于底面的四棱锥称之为“阳马”,已知某“堑堵”与某“阳马”组合而成的几何体的三视图如图所示,则该几何体的体积$\frac{5\sqrt{3}}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知圆C满足:①圆心在第一象限,截y轴所得弦长为2,②被x轴分成两段圆弧,其弧长的比为3:1,③圆心到直线x-2y=0的距离为$\frac{\sqrt{5}}{5}$
(Ⅰ)求圆C的方程
(Ⅱ)若点M是直线x=3上的动点,过点M分别做圆C的两条切线,切点分别为P,Q,求证:直线PQ过定点.

查看答案和解析>>

同步练习册答案