分析 (1)在二项式中,令x=1,可得各项系数和,再根据展开式的各项系数之和为3,求得a的值.
(2)利用二项展开式的通项公式,求得展开式中常数项.
解答 解:(1)在(2x2+a)($\frac{2}{{x}^{2}}$-1)5的展开式中,令x=1,可得的各项系数之和为(2+a)•1=3,∴a=1.
(2)∵(2x2+a)($\frac{2}{{x}^{2}}$-1)5 =(2x2+1)($\frac{2}{{x}^{2}}$-1)5,故展开式中常数项为2•${C}_{5}^{4}$•2+${C}_{5}^{5}$•(-1)5=19.
点评 本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.
科目:高中数学 来源: 题型:解答题
| 产品 | 所需能源 | 利润(万元) | |
| 煤(t) | 电(kw•h) | ||
| A | 6 | 6 | 9 |
| B | 4 | 9 | 1 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 平均数为62.5 | B. | 中位数为62.5 | C. | 众数为60和70 | D. | 以上都不对 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [$\frac{2kπ}{3}$-$\frac{7π}{18}$,$\frac{2kπ}{3}$+$\frac{π}{6}$](k∈Z) | B. | [$\frac{2kπ}{3}$-$\frac{5π}{18}$,$\frac{2kπ}{3}$+$\frac{π}{18}$](k∈Z) | ||
| C. | [kπ-$\frac{5π}{12}$,kπ+$\frac{π}{12}$](k∈Z) | D. | [kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$](k∈Z) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 系统抽样、简单随机抽样、分层抽样 | B. | 系统抽样、分层抽样、简单随机抽样 | ||
| C. | 分层抽样、简单随机抽样、系统抽样 | D. | 分层抽样、系统抽样、简单随机抽样 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| x | 0.04 | 1 | 4.84 | 10.24 | |
| y | 1.1 | 2.1 | 2.3 | 3.3 | 4.3 |
| A. | -4.32 | B. | 1.69 | C. | 1.96 | D. | 4.32 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com