精英家教网 > 高中数学 > 题目详情
6.①某校为了调查该校高中学生每天的睡眠时间,决定从3200名高中学生中任意抽取10%进行调查;②某班在一次数学月考中,成绩在三个分数段[0,90),[90,120),[120,150]内的学生分别有6人、30人和18人,现从这54人中任意抽取9人了解有关情况;③从某班10名班干部中任意抽取3名参加校学生会的座谈会,完成以上三件事,最恰当的抽取方法分别是(  )
A.系统抽样、简单随机抽样、分层抽样B.系统抽样、分层抽样、简单随机抽样
C.分层抽样、简单随机抽样、系统抽样D.分层抽样、系统抽样、简单随机抽样

分析 利用简单随机抽样、系统抽样、分层抽样的定义和性质直接求解.

解答 解:在①中,从3200名高中学生中任意抽取10%进行调查,应该选用系统抽样;
在②中,成绩在三个分数段[0,90),[90,120),[120,150]内的学生分别有6人、30人和18人,
现从这54人中任意抽取9人了解有关情况,应该选项用分层抽样;
在③中,从某班10名班干部中任意抽取3名参加校学生会的座谈会,应该选简单随机抽样.
故选:B.

点评 本题考查抽样方法的确定,是基础题,解题时要认真审题,注意简单随机抽样、系统抽样、分层抽样定义和性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.经调查,某企业生产某产品的产量x(吨)与相应的生产能耗y(吨)的几组对应数据如表所示:
x3456
y2.534a
若根据上表中数据得出y关于x的线性回归方程为$\widehat{y}$=0.7x+0.35,则表中a有的值为(  )
A.3B.3.15C.3.5D.4.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知两个正数a,b的等差中项为3,则ab的最大值为(  )
A.$\frac{3}{2}$B.$\frac{9}{4}$C.3D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)是R上的偶函数,g(x)是R上的奇函数,且g(x)=f(x-1),g(1)=2,则f(2014)的值为(  )
A.2B.0C.-2D.±2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知(2x2+a)($\frac{2}{{x}^{2}}$-1)5的展开式的各项系数之和为3.
(1)求a的值;
(2)求(2x2+a)($\frac{2}{{x}^{2}}$-1)5的展开式的常数项.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设变量x,y满足约束条件$\left\{\begin{array}{l}{2x+y≥4}\\{x-y≥-1}\\{x-2y≤2}\end{array}\right.$,则目标函数z=x+y的最小值为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”,将底面为矩形,一条侧棱垂直于底面的四棱锥称之为“阳马”,已知某“堑堵”与某“阳马”组合而成的几何体的三视图如图所示,则该几何体的体积$\frac{5\sqrt{3}}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知抛物线C1:y2=2px(p>0)的焦点为F,抛物线上存在一点G到焦点的距离为3,且点G在圆C:x2+y2=9上.
(Ⅰ)求抛物线C1的方程;
(Ⅱ)已知椭圆C2:$\frac{x^2}{m^2}+\frac{y^2}{n^2}$=1(m>n>0)的一个焦点与抛物线C1的焦点重合,且离心率为$\frac{1}{2}$.直线l:y=kx-4交椭圆C2于A、B两个不同的点,若原点O在以线段AB为直径的圆的外部,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆的两个焦点坐标分别是(-$\sqrt{2}$,0),($\sqrt{2}$,0),并且经过点($\frac{\sqrt{2}}{2}$,$\frac{\sqrt{30}}{6}$).
(1)求椭圆的标准方程;
(2)斜率为k的直线l经过点(0,-2),且与椭圆交于不同的两点A、B,当△OAB面积为$\frac{\sqrt{3}}{2}$时,求直线l的斜率k.

查看答案和解析>>

同步练习册答案