精英家教网 > 高中数学 > 题目详情
5.给出下列说法:
①不等于2的所有偶数可以组成一个集合;
②高一年级的所有高个子同学可以组成一个集合;
③{1,2,3,}与{2,3,1}是不同的集合;
④2016年里约奥约会比赛项目.
其中正确的个数是(  )
A.0B.1C.2D.3

分析 ①根据集合元素的特性“确定性”进行判断;
②“高个子”不明确,故不能构成集合;
③根据两个集合中的元素完全相同,则集合相等进行判断;
④显然判定一个对象是否属于该集合的条件明确,故④是真命题.

解答 解:对于①④:由集合元素的特性“确定性”可知,题目所给的限制条件能够明确的判断一个对象是否为该集合的元素,故①④皆为真命题;
对于②:高个子不明确,不能说明怎样才算高个子,也就不能判断一位同学是否为该集合的元素,故③为假命题;
对于③:两集合相等只需元素完全相同即可,不需要顺序也相同,故③为假命题.
故选C.

点评 本题考查了集合的定义、集合中元素的特性等知识,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)是定义在R上的偶函数,且最小正周期为2,若0≤x≤1时,f(x)=x,则f(-1)+f(-2017)=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若函数f(x)=2sin(ωx+φ)对任意x都有f(${\frac{π}{3}$+x)=f(-x),则f($\frac{π}{6}}$)=(  )
A.2或0B.0C.-2或0D.-2或2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在△ABC中,三边a,b,c所对的角分别为A,B,C,若a2+b2=$\sqrt{2}$ab+c2,则角C为450

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.如图,球O的半径为5,一个内接圆台的两底面半径分别为3和4(球心O在圆台的两底面之间),则圆台的体积为$\frac{259π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设数列{an}的前n项和为Sn,关于数列{an}有下列四个结论:
①若数列{an}既是等差数列又是等比数列,则Sn=na1
②若Sn=2n-1,则数列{an}是等比数列;
③若Sn=an2+bn(a,b∈R),则数列{an}是等差数列;
④若Sn=an(a∈R),则数列{an}既是等差数列又是等比数列.
其中正确结论的序号是①③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.执行下面的程序框图,则输出结果S=(  )
A.$\frac{21}{16}$B.$\frac{85}{64}$C.$\frac{63}{32}$D.$\frac{127}{64}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.要得到函数y=sin2x的图象,只需将y=sin(2x+$\frac{π}{4}$)的图象(  )
A.向左平移$\frac{π}{8}$个单位长度B.向右平移$\frac{π}{8}$个单位长度
C.向左平移$\frac{π}{4}$个单位长度D.向右平移$\frac{π}{4}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图所示的平面区域所对应的不等式组是(  )
A.$\left\{{\begin{array}{l}{x+y-1≥0}\\{x-2y+2≥0}\\{2x-y-2≤0}\end{array}}\right.$B.$\left\{{\begin{array}{l}{x+y-1≥0}\\{x-2y+2≥0}\\{2x-y-2≥0}\end{array}}\right.$
C.$\left\{{\begin{array}{l}{x+y-1≥0}\\{x-2y+2≤0}\\{2x-y-2≤0}\end{array}}\right.$D.$\left\{{\begin{array}{l}{x+y-1≥0}\\{x-2y+2≤0}\\{2x-y-2≥0}\end{array}}\right.$

查看答案和解析>>

同步练习册答案