精英家教网 > 高中数学 > 题目详情
已知⊙O:x2+y2=4与点P(3,4),过点P作圆O的两条切线,切点分别为A,B,求直线AB的方程.
考点:圆的切线方程
专题:直线与圆
分析:直线AB可看作已知圆与以AP为半径的圆的交线,求出未知圆的方程,运用两圆方程相减,即可.
解答: 解:直线AB可看作已知圆与以AP为半径P为圆心的圆的交线,x2+y2=4的圆心(0,0),半径为2.
|AP|=
PO2-22
=
52-22
=
21

以AP为半径P为圆心的圆的方程为:(x-3)2+(y-4)2=21,即x2+y2-6x-8y+4=0
将两圆的方程相减得,6x+8y=8即3x+4y-4=0.
∴直线AB的方程是3x+4y-4=0.
点评:本题考查直线与圆的方程,及位置关系的判断,考查基本的运算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C中心在原点O,焦点在x轴上,其长轴长为焦距的2倍,且过点M(1,
3
2
),F为其左焦点.
(1)求椭圆C的标准方程;
(2)过左焦点F的直线l与椭圆交于A、B两点,当|AB|=
18
5
时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)无论k取任何实数,直线(1+4k)x-(2-3k)y+(2-14k)=0必经过第
 
象限;
(2)若记满足条件(1)的点集为M,U={(x,y)|x∈R,y∈R},则∁UM=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正三棱锥P-ABC,点P,A,B,C都在半径为4的球面上,若PA,PB,PC两两互相垂直,则球心到截面ABC的距离为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若二面角α-L-β的大小为
π
3
,此二面角的张口内有一点P到α、β的距离分别为1和2,则P点到棱l的距离是(  )
A、
2
21
3
B、2
C、2
7
D、2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

2sin23°cos23°-sin16°cos30°
cos′16°
等于(  )
A、-
3
2
B、-
1
2
C、
1
2
D、
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,Sn是它的前n项和,且Sn+1=4an+2,a1=1(n∈N*).
(1)设bn=an+1-2an,求数列{bn}的通项公式;
(2)设cn=
an
2n
,求证:数列{cn}为等差数列,并求{cn}的通项公式;
(3)求数列{an}的通项公式an及其前5项和S5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn满足Sn=3an-3(n∈N*),数列{bn}满足bn=
an
log 
3
2
an
(n∈N*).
(Ⅰ)求出数列{an}的通项公式;
(Ⅱ)求数列{
1
bn
}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点E(2,1)和圆O:x2+y2=16,过点E的直线l被圆O所截得的弦长为4
3
,则直线l的方程为
 

查看答案和解析>>

同步练习册答案