精英家教网 > 高中数学 > 题目详情
已知数列{an}中,Sn是它的前n项和,且Sn+1=4an+2,a1=1(n∈N*).
(1)设bn=an+1-2an,求数列{bn}的通项公式;
(2)设cn=
an
2n
,求证:数列{cn}为等差数列,并求{cn}的通项公式;
(3)求数列{an}的通项公式an及其前5项和S5
考点:数列的求和,等差关系的确定
专题:等差数列与等比数列
分析:(1)当n=1时,S2=a1+a2=4a1+2,解得a2.由Sn+1=4an+2,a1=1(n∈N*).当n≥2时,an+1=Sn+1-Sn,化为an+1-2an=2(an-2an-1),利用等比数列的通项公式即可得出.
(2)由cn+1-cn=
an+1
2n+1
-
an
2n
=
an+1-2an
2n+1
,即可证明.
(3)由(2)可得an=2ncn=(3n-1)•2n-2.分别取n=3,4,5即可得出.
解答: (1)解:当n=1时,S2=a1+a2=4a1+2,解得a2=5.
∵Sn+1=4an+2,a1=1(n∈N*).
∴当n≥2时,an+1=Sn+1-Sn=4an+2-(4an-1+2),
化为an+1-2an=2(an-2an-1),
∴bn=2bn-1
b1=a2-2a1=3.
∴数列{bn}是等比数列,bn=3•2n-1
(2)证明:cn+1-cn=
an+1
2n+1
-
an
2n
=
an+1-2an
2n+1
=
3•2n-1
2n+1
=
3
4

∴数列{cn}为等差数列,c1=
a1
2
=
1
2

∴cn=
1
2
+
3
4
(n-1)
=
3n-1
4

(3)解:由(2)可得an=2ncn=(3n-1)•2n-2
∴a1=1,a2=5,a3=16,a4=44,a5=112.
∴S5=1+5+16+44+112=178.
点评:本题考查了递推式的意义、等差数列与等比数列的通项公式及其前n项和公式,考查了变形能力,考查了推理能力与计算能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系.已知直线l的极坐标方程为θ=
π
4
(ρ∈R),曲线C的参数方程为
x=1+2cosθ
y=2sinθ
(θ为参数).若直线l与曲线C交于A,B两点,则|AB|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若sinα+cosα=
1
2
,则sin3α+cos3α=
 
,sin6α+cos6α=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知⊙O:x2+y2=4与点P(3,4),过点P作圆O的两条切线,切点分别为A,B,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知角α终边上的一点是P(-
4
5m
3
5m
),且
sin(
2
+α)
tan(7π+α)
<0,求sin(π-α)+sin(
π
2
+α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平行四边形ABCD的三个顶点的坐标为A(0,0),B(5,0),C(2,-4).
(Ⅰ)在△ABC中,求边AC中线所在直线方程;
(Ⅱ)求的顶点D的坐标及对角线BD的长度;
(Ⅲ)求平行四边形ABCD的面积及边AD所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C:y=
-x2-2x
与直线l:x+y-m=0有两个交点,则m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下表是银川九中高二七班数学兴趣小组调查研究iphone6购买时间x(月)与再出售时价格y(千元)之间的数据.
x(月)1245
y(千元)7643
(1)画出散点图并求y关于x的回归直线方程;
(2)试指出购买时间每增加一个月(y≤8时),再出售时售价发生怎样的变化?
温馨提示:线性回归直线方程
y
=bx+a中,
n
i=1
xiyi-n
.
xy
n
i=1
xi2-n
.
x
2
a=
.
y
-b
.
x

查看答案和解析>>

科目:高中数学 来源: 题型:

若sinα+cosα=m,则sinαcosα=
 
(用m的代数式表示).

查看答案和解析>>

同步练习册答案