精英家教网 > 高中数学 > 题目详情
已知f(x)是定义在[a,b]上的函数,其图象是一条连续的曲线,且满足下列条件:
①f(x)的值域为M,且M⊆[a,b];
②对任意不相等的x,y∈[a,b],都有|f(x)-f(y)|<|x-y|.
那么,关于x的方程f(x)=x在区间[a,b]上根的情况是(  )
A、没有实数根
B、有且仅有一个实数根
C、恰有两个不等的实数根
D、实数根的个数无法确定
考点:函数的零点与方程根的关系
专题:函数的性质及应用
分析:由题意设g(x)=f(x)-x,已知区间[a,b]判断两个端点与0的关系,根据根的存在定理进行求解.
解答: 解:设g(x)=f(x)-x.
∵f(x)的值域M满足M⊆[a,b];
∴g(a)=f(a)-a≥0,
g(b)=f(b)-b≤0,
所以g(x)=0在[a,b]有实数根,
若有两个不同的实数根x,y,
则f(x)=x,f(y)=y,得f(x)-f(y)=x-y,
这与已知条件|f(x)-f(y)|<|x-y|相矛盾.
故选B.
点评:此题考查根的存在性及根的个数判断,比较简单是一道基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线x2-
y2
3
=1的左顶点为A1,右焦点为F2,P为双曲线右支上一点,则
PA1
PF2
最小值为(  )
A、-2
B、-
81
16
C、1
D、0

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,设点P(x,y),定义[OP]=|x|+|y|,其中O为坐标原点.对于下列结论:
(1)符合[OP]=1的点P的轨迹围成的图形的面积为2;
(2)设点P是直线:
5
x+2y-2=0上任意一点,则[OP]min=
2
5
5

(3)设点P是直线:y=kx+1(k∈R)上任意一点,则“使得[OP]最小的点P有无数个”的充要条件是“k=±1”;
(4)设点P是椭圆
x2
4
+y2=1上任意一点,则[OP]max=5.
其中正确的结论序号为(  )
A、(1)、(2)、(3)
B、(1)、(3)、(4)
C、(2)、(3)、(4)
D、(1)、(2)、(4)

查看答案和解析>>

科目:高中数学 来源: 题型:

巳知二次函数f(x)=ax2+bx+c和g(x)=ax2+bx+c•lnx(abc≠0).
(Ⅰ)证明:当a<0时,无论b为何值,函数g(x)在定义域内不可能总为增函数;
(Ⅱ)在同一函数图象上取任意两个不同的点A(x1,y1),B(x2,y2),线段AB的中点C(x0,y0),记直线AB的斜率为k若f(x)满足k=f′(x0),则称其为“K函数”.判断函数f(x)=ax2+bx+c与g(x)=ax2+bx+c•lnx是否为“K函数”?并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

长方体ABCD-A1B1C1D1的各顶点都在以O为球心的球面上,且AB=AD=1,AA1=
2
,则A、D1两点的球面距离为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下面四个命题:
①命题“?x∈R,x2-x>0”的否定是“?x∈R,x2-x≤0”;
②把函数y=3sin(2x+
π
3
)的图象向右平移
π
3
个单位,得到y=3sin2x的图象;
③正方体的内切球与其外接球的表面积之比为1:3;  
④若f(x)=sinxcosx,则存在正实数a,使得f(x-a)为奇函数,f(x+a)为偶函数.
其中所有正确命题的序号为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-3x2+a,若f(x+1)是奇函数,则曲线y=f(x)在点(0,a)处的切线方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的中心在坐标原点,一个焦点为F(0,-2
2
),对应的准线方程为y=-
9
2
4

(Ⅰ)求椭圆C的方程;
(Ⅱ)是否存在直线l,使l与椭圆C交于不同的两点M,N,且使线段MN恰好被直线x=-
1
2
平分?若存在,求l的倾斜角θ的取值范围,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如程序框图的程序执行后输出的结果是(  )
A、1320B、1230
C、132D、11880

查看答案和解析>>

同步练习册答案