精英家教网 > 高中数学 > 题目详情
20.在直角坐标系xOy中,曲线C的参数方程$\left\{\begin{array}{l}{x=2+2cosφ}\\{y=2sinφ}\end{array}\right.$(φ为参数),以O为极点,x轴的非负半轴为极轴建立极坐标系.
(Ⅰ)求曲线C的极坐标方程;
(Ⅱ)直线l的极坐标方程是ρcos(θ+$\frac{π}{3}$)=2,直线θ=$\frac{π}{3}$与曲线C交于点O和P,与直线l交于点Q,求PQ的长.

分析 (I)由曲线C的参数方程$\left\{\begin{array}{l}{x=2+2cosφ}\\{y=2sinφ}\end{array}\right.$(φ为参数),消去参数可得曲线的普通方程:(x-2)2+y2=4,展开把互化公式代入可得极坐标方程.
(II)把直线θ=$\frac{π}{3}$代入直线l的极坐标方程可得:ρ1.把直线θ=$\frac{π}{3}$代入曲线C的极坐标方程可得:ρ2.可得|PQ|=|ρ12|.

解答 解:(I)由曲线C的参数方程$\left\{\begin{array}{l}{x=2+2cosφ}\\{y=2sinφ}\end{array}\right.$(φ为参数),消去参数可得曲线的普通方程:(x-2)2+y2=4,展开为:x2+y2-4x=0,把互化公式代入可得:ρ2-4ρcosθ=0,即ρ=4cosθ.
(II)把直线θ=$\frac{π}{3}$代入直线l的极坐标方程可得:ρ1=$\frac{2}{cos\frac{2π}{3}}$=-4.
把直线θ=$\frac{π}{3}$代入曲线C的极坐标方程可得:ρ2=4cos$\frac{π}{3}$=2.
∴|PQ|=|ρ12|=6.

点评 本题考查了参数方程化为普通方程、直角坐标方程化为极坐标方程、极坐标方程的应用,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知直线l1;2x+y-2=0,l2:ax+4y+1=0,若l1⊥l2,则a的值为(  )
A.8B.2C.-$\frac{1}{2}$D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知抛物线y2=2px(p>0)上的点到焦点的距离的最小值为2,过点(0,1)的直线l与抛物线只有一个公共点,则焦点到直线l的距离为(  )
A.1或$\sqrt{2}$或2B.1或2或$\sqrt{5}$C.2或$\sqrt{2}$D.2或$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.直线$\left\{\begin{array}{l}{x=-2-\sqrt{2}t}\\{y=3+\sqrt{2}t}\end{array}\right.$(t为参数)对应的普通方程是x+y-1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设f(x)=$\left\{\begin{array}{l}{lo{g}_{4}x-1,x>0}\\{{2}^{x}-x+\frac{1}{3}{a}^{3},x≤0}\end{array}\right.$,若f(f(4))=$\frac{11}{3}$,则a=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.参数方程为$\left\{{\begin{array}{l}{x={t^2}}\\{y=2t}\end{array}}\right.$(t为参数)的曲线的焦点坐标为(1,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数$f(x)=\frac{{m•{4^x}+1}}{2^x}$是偶函数.
(1)求实数m的值;
(2)若关于x的不等式2k•f(x)>3k2+1在(-∞,0)上恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知正四面体ABCD的四个顶点都在球心为O的球面上,点P为棱BC的中点,$BC=6\sqrt{2}$,过点P作球O的截面,则截面面积的最小值为18π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知菱形ABCD的边长为2,∠ABC=60°,点E满足$\overrightarrow{BE}=\frac{1}{2}\overrightarrow{BC}$,则$\overrightarrow{AE}•\overrightarrow{AD}$=0.

查看答案和解析>>

同步练习册答案