【题目】已知函数f(x)=2x2﹣4x+a,g(x)=logax(a>0且a≠1).
(1)若函数f(x)在[﹣1,3m]上不具有单调性,求实数m的取值范围;
(2)若f(1)=g(1)
①求实数a的值;
②设t1= f(x),t2=g(x),t3=2x , 当x∈(0,1)时,试比较t1 , t2 , t3的大小.
【答案】
(1)解:因为抛物线y=2x2﹣4x+a开口向上,对称轴为x=1,
所以函数f(x)在(﹣∞,1]上单调递减,在[1,+∞)上单调递增,
因为函数f(x)在[﹣1,3m]上不单调,
所以3m>1,
得
(2)解:①因为f(1)=g(1),所以﹣2+a=0,
所以实数a的值为2.
②因为t1= f(x)=x2﹣2x+1=(x﹣1)2,
t2=g(x)=log2x,
t3=2x,
所以当x∈(0,1)时,t1∈(0,1),
t2∈(﹣∞,0),
t3∈(1,2),
所以t2<t1<t3
【解析】(1)函数f(x)在(﹣∞,1]上单调递减,在[1,+∞)上单调递增,因为函数f(x)在[﹣1,3m]上不单调,以3m>1,解得实数m的取值范围;(2)①因为f(1)=g(1),所以﹣2+a=0,解得实数a的值;②设t1= f(x),t2=g(x),t3=2x , 当x∈(0,1)时,求出三个函数的值域,可得答案.
科目:高中数学 来源: 题型:
【题目】已知某几何体的俯视图是如图所示的矩形,正视图(或称主视图)是一个底边长为8,高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6,高为4的等腰三角形.
(Ⅰ)求该几何体的体积V;
(Ⅱ)求该几何体的面积S.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司生产、两种产品,且产品的质量用质量指标来衡量,质量指标越大表明产品质量越好.现按质量指标划分:质量指标大于或等于82为一等品,质量指标小于82为二等品.现随机抽取这两种产品各100件进行检测,检测结果统计如表:
测试指标 | |||||
产品 | 8 | 12 | 40 | 32 | 8 |
产品 | 7 | 18 | 40 | 29 | 6 |
(Ⅰ)请估计产品的一等奖;
(Ⅱ)已知每件产品的利润(单位:元)与质量指标值的关系式为:
已知每件产品的利润(单位:元)与质量指标值的关系式为:
(i)分别估计生产一件产品,一件产品的利润大于0的概率;
(ii)请问生产产品, 产品各100件,哪一种产品的平均利润比较高.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,矩形ABCD和梯形BEFC所在平面互相垂直,∠BCF=∠CEF=90°,AD= .
(Ⅰ)求证:AE∥平面DCF;
(Ⅱ)当AB的长为何值时,二面角A﹣EF﹣C的大小为60°?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(1)求函数的极值;
(2)若时,函数有且只有一个零点,求实数的值;
(3若,对于区间上的任意两个不相等的实数,都有成立,求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com