【题目】如图,在正方体
中,
,
分别是棱
,
的中点,
为棱
上一点,
且
平面
.
![]()
(1)证明:
为
中点;
(2)求平面
与平面
所成锐二面角的余弦值.
科目:高中数学 来源: 题型:
【题目】为了调查学生数学学习的质量情况,某校从高二年级学生(其中男生与女生的人数之比为
)中,采用分层抽样的方法抽取
名学生依期中考试的数学成绩进行统计.根据数学的分数取得了这
名同学的数据,按照以下区间分为八组:
①
,②
,③
,④
,⑤
,⑥
,⑦
,⑧![]()
得到频率分布直方图如图所示.已知抽取的学生中数学成绩少于
分的人数为
人.
![]()
(1)求
的值及频率分布直方图中第④组矩形条的高度;
(2)如果把“学生数学成绩不低于
分”作为是否达标的标准,对抽取的
名学生,完成下列
列联表:
![]()
据此资料,你是否认为“学生性别”与“数学成绩达标与否”有关?
(3)若从该校的高二年级学生中随机抽取
人,记这
人中成绩不低于
分的学生人数为
,求
的分布列、数学期望和方差
附1:“
列联表
”的卡方统计量公式:![]()
附2:卡方(
)统计量的概率分布表:![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,平面PAD⊥底面 ABCD,侧棱PA=PD=
,底面ABCD为直角梯形,其中BC∥AD ,AB⊥AD,AD=2AB=2BC=2,O为AD中点.
![]()
(Ⅰ)求证:PO⊥平面ABCD;
(Ⅱ)线段AD上是否存在点
,使得它到平面PCD的距离为
?若存在,求出
值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】4月23日是“世界读书日”,某中学在此期间开展了一系列的读书教育活动.为了解高三学生课外阅读情况,采用分层抽样的方法从高三某班甲、乙、丙、丁四个小组中随机抽取10名学生参加问卷调查.各组人数统计如下:
![]()
(1)从参加问卷调查的10名学生中随机抽取两名,求这两名学生来自同一个小组的概率;
(2)在参加问卷调查的10名学生中,从来自甲、丙两个小组的学生中随机抽取两名,用
表示抽得甲组学生的人数,求
的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系
中,直线
的参数方程为
(
为参数).以坐标原点为极点,
轴的正半轴为极轴建立极坐标系,已知曲线
的极坐标方程为
.
(1)写出直线
的普通方程及曲线
的直角坐标方程;
(2)已知点
,点
,直线
过点
且与曲线
相交于
,
两点,设线段
的中点为
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司为了解广告投入对销售收益的影响,在若干地区各投入
万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示).由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从
开始计数的. [附:回归直线的斜率和截距的最小二乘估计公式分别为.]
(1)根据频率分布直方图计算图中各小长方形的宽度;
(2)试估计该公司投入
万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值);
(3)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:
广告投入 | 1 | 2 | 3 | 4 | 5 |
销售收益 | 2 | 3 | 2 | 7 |
由表中的数据显示,
与
之间存在着线性相关关系,请将(2)的结果填入空白栏,并求出
关于
的回归直线方程.
![]()
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com