精英家教网 > 高中数学 > 题目详情

【题目】如图,已知中,角的对边分别为

)若,求面积的最大值;

)若,求.

【答案】(Ⅰ); (Ⅱ).

【解析】【试题分析】(Ⅰ)先运用余弦定理建立方程,再运用基本不等式与三角形的面积公式求解; (Ⅱ)先运用正弦定理将边化为角的关系,再借助三角变换公式进行求解:

(Ⅰ)由余弦定理得, ………………………………………2分

,当且仅当时取等号;

解得 ………………………………………………………………………………………4分

,即面积的最大值为.………………6分

(Ⅱ)因为,由正弦定理得…………………………………………8分

,故

…………………………………………10分

. ………………………………………………12分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在正方体中,分别是棱的中点,为棱上一点,平面.

(1)证明:中点;

(2)求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数有一个极小值点和一个极大值点,求的取值范围;

(2)设,若存在,使得当时, 的值域是,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥PABCD中,PA⊥底面ABCDPA=2,∠ABC=90°,BC=1, ,∠ACD=60°,ECD的中点.

(1)求证:BC∥平面PAE

(2)求点A到平面PCD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场销售价与上市时间的关系用图(1)的一条折线表示;西红柿的种植成本与上市时间的关系用图(2)的抛物线段表示.

(1)写出图(1)表示的市场售价与时间的函数关系式写出图(2)表示的种植成本与时间的函数关系式

(2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿收益最大?(注:市场售价和种植成本的单位:元/kg,时间单位:天.)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题α:函数的定义域是R;命题β:在R上定义运算xy=x1-y).不等式(x-ax+a)<1对任意实数x都成立.

1)若αβ中有且只有一个真命题,求实数a的取值范围;

2)若αβ中至少有一个真命题,求实数a的取值范围;

3)若αβ中至多有一个真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若一个人下半身长(肚脐至足底)与全身长的比近似为,称为黄金分割比),堪称“身材完美”,且比值越接近黄金分割比,身材看起来越好,若某人着装前测得头顶至肚脐长度为72,肚脐至足底长度为103,根据以上数据,作为形象设计师的你,对TA的着装建议是( )

A.身材完美,无需改善B.可以戴一顶合适高度的帽子

C.可以穿一双合适高度的增高鞋D.同时穿戴同样高度的增高鞋与帽子

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,侧面是等边三角形且垂直于底面,底面是矩形,的中点.

(1)证明:平面

(2)点在棱上,且直线与直线所成角的余弦值为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,函数.

)设不等式的解集为C,当时,求实数取值范围;

)若对任意,都有成立,试求时,的值域;

)设,求的最小值.

查看答案和解析>>

同步练习册答案