精英家教网 > 高中数学 > 题目详情
若函数f(x)满足:①定义域为(0,+∞);②a、b∈(0,+∞),有f(a)+f(b)=f(ab);③f(
3
)=
1
2
.写出满足这些条件的一个函数为
f(x)=log3x
f(x)=log3x
分析:先根据f(a)+f(b)=f(ab),可知此函数可以为为对数函数.
解答:解:∵f(a)+f(b)=f(ab),a、b∈(0,+∞),
∴满足条件y=logax(0<a≠1),并且函数的定义域(0,+∞)满足①.
又∵f(
3
)=
1
2

1
2
=loga
3

∴a=3.满足题意的一个函数为:y=log3x.
故答案为:y=log3x.
点评:本题考查了函数解析式的求解及常用方法、解答的关键是注意对照应用对数函数的运算性质,要注意写出一个满足条件的函数就可以.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数y=sin(ωx+φ)(ω>0,|φ|<
π
2
)
在同一个周期内,当x=
π
4
时y取最大值1,当x=
12
时,y取最小值-1.
(1)求函数的解析式y=f(x).
(2)函数y=sinx的图象经过怎样的变换可得到y=f(x)的图象?
(3)若函数f(x)满足方程f(x)=a(0<a<1),求在[0,2π]内的所有实数根之和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3sinxcosx-
3
2
cos2x,(x∈R)

(1)求函数f(x)的最小正周期;
(2)若函数f(x)满足f(x+m)=f(m-x),试求实数m的最小正值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)满足f(
1
x
)=-f(x)
,则称f(x)为倒负变换函数.下列函数:
y=x-
1
x
;②y=x+
1
x
;③f(x)=
-x, 0<x<1
0, x=1
x-1, x>1
中为倒负变换函数的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)满足f(x+3)=x,f-1(x)的定义域为[1,4],则f(x)的定义域为、(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•普陀区一模)若函数f(x)满足f(x+10)=2f(x+9),且f(0)=1,则f(10)=
210
210
_.

查看答案和解析>>

同步练习册答案