分析 (1)代入即可求出a1、a2、a3的值;
(2)通过Sn+an=n与Sn+1+an+1=n+1作差、整理得2an+1-an=1,变形可知an+1-1=$\frac{1}{2}$(an-1),进而可知数列{an-1}是以-$\frac{1}{2}$为首项、$\frac{1}{2}$为公比的等比数列.
解答 解:(1)a1=S1=1-a1,
∴a1=$\frac{1}{2}$,
∵S2=a1+a2=2-a2,
∴a2=$\frac{3}{4}$,
∵S3=a1+a2+a3=3-a3,
∴a3=$\frac{7}{8}$,
(2)∵Sn=n-an,
∴Sn+1=n+1-an+1,
两式相减得:2an+1-an=1,
整理得:an+1-1=$\frac{1}{2}$(an-1),
∵a1-1=$\frac{1}{2}$-1=-$\frac{1}{2}$,
∴数列{an-1}是以-$\frac{1}{2}$为首项、$\frac{1}{2}$为公比的等比数列.
点评 本题考查等比数列的判定,注意解题方法的积累,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\frac{1}{2}$ | C. | $\frac{\sqrt{5}}{2}$ | D. | $\frac{\sqrt{2}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 人数 | 管理 | 技术开发 | 营销 | 生产 | 共计 |
| 老年 | 40 | 40 | 40 | 80 | 200 |
| 中年 | 80 | 120 | 160 | 240 | 600 |
| 青年 | 40 | 160 | 280 | 720 | 1 200 |
| 小计 | 160 | 320 | 480 | 1 040 | 2 000 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | c≥4 | B. | c≥3 | C. | c≥2 | D. | c≥1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com