精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
ax-5,(x>6)
(4-
a
2
)x+4,(x≤6)
,数列{an}满足an=f(n)(n∈N+),且数列{an}是单调递增数列,则实数a的取值范围是
 
分析:本题考查的是分段函数与数列的综合问题.解答时可以先根据题意写出数列通项公式的分段函数形式;然后由于数列是递增的即可获得两个条件即:对应等差数列通项n的系数大于零和a7>a6.由此即可获得解答.
解答:解:由题意知:数列{an}的通项公式为,an=
an-5,n>6
(4-
a
2
)n+4,1≤n≤5

由于数列是递增数列,∴4-
a
2
>0
,∴a<8;
又∵a7>a6,∴a2>28-3a,解得a>4或a<-7.
故a的取值范围是4<a<8.
故答案为:(4,8).
点评:此题考查的是分段函数与数列的综合问题.在解答过程当中等差数列的性质、函数的单调性以及分段函数的知识都得到了充分的体现.值得同学们体会反思.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=a-
12x+1

(1)求证:不论a为何实数f(x)总是为增函数;
(2)确定a的值,使f(x)为奇函数;
(3)当f(x)为奇函数时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)
a-x  ,x≤0
1  ,0<x≤3
(x-5)2-a,x>3
(a>0且a≠1)图象经过点Q(8,6).
(1)求a的值,并在直线坐标系中画出函数f(x)的大致图象;
(2)求函数f(t)-9的零点;
(3)设q(t)=f(t+1)-f(t)(t∈R),求函数q(t)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
1
2x+1
,若f(x)为奇函数,则a=(  )
A、
1
2
B、2
C、
1
3
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
a(x-1)x2
,其中a>0.
(I)求函数f(x)的单调区间;
(II)若直线x-y-1=0是曲线y=f(x)的切线,求实数a的值;
(III)设g(x)=xlnx-x2f(x),求g(x)在区间[1,e]上的最小值.(其中e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
12x-1
,(a∈R)
(1)求f(x)的定义域;
(2)若f(x)为奇函数,求a的值;
(3)考察f(x)在定义域上单调性的情况,并证明你的结论.

查看答案和解析>>

同步练习册答案