精英家教网 > 高中数学 > 题目详情

【题目】已知函数,其导函数为

1求函数的极值;

2时,关于的不等式恒成立,求的取值范围.

【答案】1极大值,无极小值2

【解析】

试题分析:1首先由的解析式,得到的解析式,然后求,判定出函数的单调性,由此求得函数的极值;2首先将问题转化为的最大值大于,只需求解函数的最大值即可,求得,然后分两类情形,讨论函数的单调性,求得函数的最大值,由此求得的取值范围.

试题解析:1由题知,则,当时,为增函数;当时,为减函数.所以当时,有极大值无极小值.

2由题意,

I时,时恒成立,则上单调递增,所以上恒成立,与已知矛盾,故不符合题意

II时,令,则,且

,即时,,于是上单调递减,

所以上恒成立.则上单调递减,所以上成立,符合题意

,即时,

,则上单调递增;

,则上单调递减.

,所以上恒成立,即上恒成立,

所以上单调递增,则上恒成立,

所以不符合题意.

综上所述,的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面为菱形,底面上的一点,.

(1)证明:平面

(2)设二面角,求与平面所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,O为坐标原点,点F为抛物线C1的焦点,且抛物线C1上点P处的切线与圆C2相切于点Q.

当直线PQ的方程为时,求 抛物线C1的方程;

当正数P变化时,记S1 ,S2分别为△FPQ,△FOQ的面积,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数若关于的函数有8个不同的零点,则实数的取值范围为(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某化工厂近期要生产一批化工试剂,经市场调查得知,生产这批试剂厂家的生产成本有以下三个部分:生产1单位试剂需要原料费50元;支付所有职工的工资总额由7500元的基本工资和每生产1单位试剂补贴所有职工20元组成;后续保养的平均费用是每单位试剂的总产量为单位,.

1把生产每单位试剂的成本表示为的函数关系,并求的最小值;

2如果产品全部卖出,据测算销售额关于产量单位的函数关系为,试问:当产量为多少时生产这批试剂的利润最高?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数其中.

时,若在其定义域内为单调函数,求的取值范围;

时,是否存在实数使得时,不等式恒成立,如果存在,求的取值范围,如果不存在,说明理由其中是自然对数的底数,=2.71828.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1求函数的最小值及曲线在点处的切线方程;

(2)若不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知抛物线,过点任作一直线与相交于两点,过点轴的平行线与直线相交于点为坐标原点)

1)证明: 动点在定直线上;

2)作的任意一条切线 (不含), 与直线相交于点与(1)中的定直线相交于点

证明: 为定值, 并求此定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的左、右焦点分别为,点在椭圆上,,且的面积为4.

(1)求椭圆的方程;

(2)点是椭圆上任意一点,分别是椭圆的左、右顶点,直线与直线分别交于两点,试证:以为直径的圆交轴于定点,并求该定点的坐标.

查看答案和解析>>

同步练习册答案