【题目】已知函数(),其导函数为.
(1)求函数的极值;
(2)当时,关于的不等式恒成立,求的取值范围.
【答案】(1)极大值,无极小值;(2).
【解析】
试题分析:(1)首先由的解析式,得到的解析式,然后求,判定出函数的单调性,由此求得函数的极值;(2)首先将问题转化为的最大值大于,只需求解函数的最大值即可,求得,然后分两类情形,讨论函数的单调性,求得函数的最大值,由此求得的取值范围.
试题解析:(1)由题知,,则,,当时,,为增函数;当时,,为减函数.所以当时,有极大值,无极小值.
(2)由题意,
(I)当时,在时恒成立,则在上单调递增,所以在上恒成立,与已知矛盾,故不符合题意
(II)当时,令,则,且
①当,即时,,于是在上单调递减,
所以,在上恒成立.则在上单调递减,所以在上成立,符合题意
②当,即时,,,
若,则,在上单调递增;
若,则,在上单调递减.
又,所以在上恒成立,即在上恒成立,
所以在上单调递增,则在上恒成立,
所以不符合题意.
综上所述,的取值范围为
科目:高中数学 来源: 题型:
【题目】如图,O为坐标原点,点F为抛物线C1:的焦点,且抛物线C1上点P处的切线与圆C2:相切于点Q.
(Ⅰ)当直线PQ的方程为时,求 抛物线C1的方程;
(Ⅱ)当正数P变化时,记S1 ,S2分别为△FPQ,△FOQ的面积,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某化工厂近期要生产一批化工试剂,经市场调查得知,生产这批试剂厂家的生产成本有以下三个部分:①生产1单位试剂需要原料费50元;②支付所有职工的工资总额由7500元的基本工资和每生产1单位试剂补贴所有职工20元组成;③后续保养的平均费用是每单位元(试剂的总产量为单位,).
(1)把生产每单位试剂的成本表示为的函数关系,并求的最小值;
(2)如果产品全部卖出,据测算销售额(元)关于产量(单位)的函数关系为,试问:当产量为多少时生产这批试剂的利润最高?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(其中).
(Ⅰ) 当时,若在其定义域内为单调函数,求的取值范围;
(Ⅱ) 当时,是否存在实数,使得当时,不等式恒成立,如果存在,求的取值范围,如果不存在,说明理由(其中是自然对数的底数,=2.71828…).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,已知抛物线,过点任作一直线与相交于两点,过点作轴的平行线与直线相交于点为坐标原点).
(1)证明: 动点在定直线上;
(2)作的任意一条切线 (不含轴), 与直线相交于点与(1)中的定直线相交于点.
证明: 为定值, 并求此定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知的左、右焦点分别为,,点在椭圆上,,且的面积为4.
(1)求椭圆的方程;
(2)点是椭圆上任意一点,分别是椭圆的左、右顶点,直线与直线分别交于两点,试证:以为直径的圆交轴于定点,并求该定点的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com