精英家教网 > 高中数学 > 题目详情
9.已知实数x,y满足条件$\left\{\begin{array}{l}x-2y-4≤0\\ 2x+y-8≤0\\ x≥m\end{array}$,若$\frac{y}{x}$的最大值为4,则$\frac{y}{x}$的最小值为(  )
A.-1B.-$\frac{4}{3}$C.-$\frac{3}{4}$D.-2

分析 由约束条件作出可行域,由$\frac{y}{x}$的最大值为4求出m值,则$\frac{y}{x}$的最小值可求.

解答 解:由约束条件$\left\{\begin{array}{l}x-2y-4≤0\\ 2x+y-8≤0\\ x≥m\end{array}$作出可行域如图,

联立$\left\{\begin{array}{l}{x=m}\\{2x+y-8=0}\end{array}\right.$,解得C(m,8-2m),
联立$\left\{\begin{array}{l}{x=m}\\{x-2y-4=0}\end{array}\right.$,解得A(m,$\frac{m-4}{2}$),
由图可知,$\frac{y}{x}$的最大值等于$\frac{8-2m}{m}=4$,则m=$\frac{4}{3}$,
∴A($\frac{4}{3},-\frac{4}{3}$),
∴$\frac{y}{x}$的最小值为-1.
故选:A.

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.给出四个结论:(1)若a>b>0,且m>0,则$\frac{b}{a}$<$\frac{b+m}{a+m}$;(2)若a,b∈R,则$\frac{{a}^{2}+{b}^{2}}{2}$≥($\frac{a+b}{2}$)2;(3)若a,b∈R,则a2-2ab+2b2<2b-2;(4)若a>0,b>0,则aabb≥abba,其中正确的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.以下函数中是偶函数且在区间(0,+∞)上单调递减的函数是(  )
A.y=$\frac{1}{{x}^{2}}$B.y=$\frac{1}{x}$C.y=x2D.y=x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在△AOB中,G为△AOB的重心,且$∠AOB=\frac{π}{3}$.若$\overrightarrow{OA}•\overrightarrow{OB}=6$,则$|{\overrightarrow{OG}}|$的最小值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设向量$\overrightarrow{a}$=(cosα,$\frac{1}{2}$),若$\overrightarrow{a}$的模长为$\frac{\sqrt{2}}{2}$,则cos2α等于(  )
A.-$\frac{1}{2}$B.-$\frac{1}{4}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$\frac{x}{4}$+$\frac{a}{x}$-lnx-$\frac{3}{2}$,其中a∈R,且曲线y=f(x在点(1,f(1))处的切线垂直于直线y=$\frac{1}{2}$x.
(1)求a的值及在点(1,f(1))处的切线方程;
(2)求函数f(x)的单调区间与极值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.现采用随机模拟的方法估计某运动员射击4次,至少击中3次的概率:先由计算器给出0到9之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7,8,9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组随机数:
7527   0293   7140   9857   0347   4373   8636   6947   1417   4698
0371   6233   2616   8045   6011   3661   9597   7424   7610   4281
根据以上数据估计该射击运动员射击4次至少击中3次的概率为0.75.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知向量$\overrightarrow{m}$=(2x,7),$\overrightarrow{n}$=(6,x+4),若$\overrightarrow{m}$∥$\overrightarrow{n}$且$\overrightarrow{m}$≠$\overrightarrow{n}$,则x的值为(  )
A.-7或3B.-3或7C.-7D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=sinx在区间($-\frac{π}{2}$,$\frac{3π}{2}$)上有两个不同的零点x1,x2,且方程f(x)=a有两个不同的实根x3,x4.若把x1,x2,x3,x4 从小到大排列恰好构成等差数列,则实数a的值$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

同步练习册答案