精英家教网 > 高中数学 > 题目详情
9.已知f(x)是一次函数,且3f(1)-2f(2)=-5,2f(0)-f(-1)=1,则f(x)的解析式为(  )
A.f(x)=3x-2B.f(x)=3x+2C.f(x)=2x+3D.f(x)=2x-3

分析 根据题意,设f(x)=kx+b,利用3f(1)-2f(2)=-5,2f(0)-f(-1)=1,求出k,b的值即可得f(x)的解析式.

解答 解:由题意:f(x)是一次函数,设f(x)=kx+b,
∵3f(1)-2f(2)=-5,2f(0)-f(-1)=1,
可得:3k+3b-4k-2b=-5,2b+k-b=1,
解得:k=3,b=-2.
所以得f(x)的解析式为f(x)=3x-2
故选:A.

点评 本题考查了函数的解析式的求法和计算能力.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.设A={x|x2-4x+3≤0},B={x|2x-3<0},则图中阴影部分表示的集合为(  )
A.(-3,-$\frac{3}{2}$)B.(-3,$\frac{3}{2}$)C.[1,$\frac{3}{2}$)D.($\frac{3}{2}$,3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)=5x+b的图象经过第一、三、四象限,则实数b的取值范围是b<-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列函数是幂函数且在(0,+∞)上是增函数的是(  )
A.y=2x2B.y=x-1C.y=x${\;}^{\frac{1}{2}}$D.y=x3-x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某小区提倡低碳生活,环保出行,在小区提供自行车出租.该小区有40辆自行车供小区住户租赁使用,管理这些自行车的费用是每日92元,根据经验,若每辆自行车的日租金不超过5元,则自行车可以全部出租,若超过5元,则每超过1元,租不出的自行车就增加2辆,为了便于结算,每辆自行车的日租金x元只取整数,用f(x)元表示出租自行车的日纯收入(日纯收入=一日出租自行车的总收入-管理费用)
(1)求函数f(x)的解析式及其定义域;
(2)当租金定为多少时,才能使一天的纯收入最大?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若函数y=ln$\frac{ax-1}{2x+1}$为奇函数,则a=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知△ABC是边长为1的等边三角形,点D,E分别是边AB,BC的中点,连接DE并延长到点F,使$\overrightarrow{DE}$=2$\overrightarrow{EF}$,则$\overrightarrow{AF}$•$\overrightarrow{BC}$的值为(  )
A.$\frac{1}{8}$B.$\frac{1}{4}$C.$\frac{11}{8}$D.$-\frac{5}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.某几何体的三视图如图所示,且该几何体的体积是3,则正视图中的x的值是(  )
A.$\frac{5}{6}$B.2C.$\frac{5}{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设x,y满足线性约束条件$\left\{\begin{array}{l}{2x-y+2≥0}\\{x-3y+1≤0}\\{x+y-2≤0}\end{array}\right.$,若z=ax-y(a>0)取得最大值的最优解有数多个,则实数a的值为(  )
A.2B.$\frac{1}{3}$C.$\frac{1}{2}$D.3

查看答案和解析>>

同步练习册答案