精英家教网 > 高中数学 > 题目详情
1.已知△ABC是边长为1的等边三角形,点D,E分别是边AB,BC的中点,连接DE并延长到点F,使$\overrightarrow{DE}$=2$\overrightarrow{EF}$,则$\overrightarrow{AF}$•$\overrightarrow{BC}$的值为(  )
A.$\frac{1}{8}$B.$\frac{1}{4}$C.$\frac{11}{8}$D.$-\frac{5}{8}$

分析 可画出图形,并连接AE,从而有AE⊥BC,这便得出$\overrightarrow{AE}•\overrightarrow{BC}=0$,并由条件得出$\overrightarrow{EF}=\frac{1}{2}\overrightarrow{DE}$,而$\overrightarrow{AF}=\overrightarrow{AE}+\overrightarrow{EF}$,代入$\overrightarrow{AF}•\overrightarrow{BC}$,进行数量积的运算即可求出该数量积的值.

解答 解:如图,连接AE,则:AE⊥BC;
$\overrightarrow{DE}=2\overrightarrow{EF}$;
∴$\overrightarrow{EF}=\frac{1}{2}\overrightarrow{DE}$;
∴$\overrightarrow{AF}•\overrightarrow{BC}=(\overrightarrow{AE}+\overrightarrow{EF})•\overrightarrow{BC}$
=$\overrightarrow{AE}•\overrightarrow{BC}+\frac{1}{2}\overrightarrow{DE}•\overrightarrow{BC}$
=$0+\frac{1}{2}|\overrightarrow{DE}||\overrightarrow{BC}|cos\frac{π}{3}$
=$\frac{1}{2}×\frac{1}{2}×1×\frac{1}{2}$
=$\frac{1}{8}$.
故选A.

点评 本题考查向量垂直的充要条件,向量加法的几何意义,向量的数乘运算,以及向量数量积的运算及计算公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.若函数f(x)=$\frac{1}{3}$x3+ax2+bx+c有极值点x1,x2(x1>x2),f(x1)=x1,则关于x的方程[f(x)]2+2af(x)+b=0的不同实数根的个数是3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比.已知投资1万元时两类产品的收益分别为0.125万元和0.5万元(如图).

(1)分别写出两种产品的收益与投资额的函数关系式;
(2)该家庭现有20万元资金,全部用于理财投资,问:怎么分配资金能使投资获得最大收益,其最大收益是多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知f(x)是一次函数,且3f(1)-2f(2)=-5,2f(0)-f(-1)=1,则f(x)的解析式为(  )
A.f(x)=3x-2B.f(x)=3x+2C.f(x)=2x+3D.f(x)=2x-3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图所示的函数F(x)的图象,由指数函数f(x)=ax与幂函数g(x)=xb“拼接”而成.
(1)求F(x)的解析式;
(2)比较ab与ba的大小;
(3)已知(m+4)-b<(3-2m)-b,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在平面直角坐标系xOy中,点A(2,0),点B在单位圆上,∠AOB=θ(0<θ<π).
(I)若点B(-$\frac{3}{5}$,$\frac{4}{5}}$),求tan($\frac{π}{4}$-θ)的值;
(II)若$\overrightarrow{OA}$+$\overrightarrow{OB}$=$\overrightarrow{OC}$,$\overrightarrow{OB}$•$\overrightarrow{OC}$=$\frac{23}{13}$,求cos(${\frac{π}{3}$+θ)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.命题“?x0∈(0,+∞),使lnx0=x0-2”的否定是(  )
A.?x∈(0,+∞),lnx≠x-2B.?x∉(0,+∞),lnx=x-2
C.?x0∈(0,+∞),使lnx0≠x0-2D.?x0∉(0,+∞),lnx0=x0-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=2x3-3(a+1)x2+6ax,且a>$\frac{1}{2}$.
(I)若函数f(x)在x=3处取得极值,求曲线y=f(x)在点(0,f(0))处的切线方程;
(II)若函数y=f(x)在[0,2a]上的最小值是-a2,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知等差数列{an}中,Sn为其前n项和,a2+a8=14,S5=25.
(1)求{an}的通项公式;
(2)设bn=$\frac{1}{{{a_n}{a_{n+1}}}}$,求数列{bn}前n项和Tn

查看答案和解析>>

同步练习册答案