精英家教网 > 高中数学 > 题目详情
12.某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比.已知投资1万元时两类产品的收益分别为0.125万元和0.5万元(如图).

(1)分别写出两种产品的收益与投资额的函数关系式;
(2)该家庭现有20万元资金,全部用于理财投资,问:怎么分配资金能使投资获得最大收益,其最大收益是多少万元?

分析 (1)由投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比,结合函数图象,我们可以利用待定系数法来求两种产品的收益与投资的函数关系;
(2)由(1)的结论,我们设设投资债券类产品x万元,则股票类投资为20-x万元.这时可以构造出一个关于收益y的函数,然后利用求函数最大值的方法进行求解.

解答 解:(1)f(x)=k1x,g(x)=${k}_{2}\sqrt{x}$,
f(1)=$\frac{1}{8}$=k1,g(1)=k2=$\frac{1}{2}$,
∴f(x)=$\frac{1}{8}$x(x≥0),g(x)=$\frac{1}{2}\sqrt{x}$(x≥0)
(2)设:投资债券类产品x万元,则股票类投资为20-x万元.
y=f(x)+g(20-x)=$\frac{x}{8}+\frac{1}{2}\sqrt{20-x}$(0≤x≤20)
令t=$\sqrt{20-x}$,则y=$\frac{20-{t}^{2}}{8}+\frac{1}{2}t$=-$\frac{1}{8}(t-2)^{2}+3$.
所以当t=2,即x=16万元时,收益最大,ymax=3万元.

点评 函数的实际应用题,我们要经过析题→建模→解模→还原四个过程,在建模时要注意实际情况对自变量x取值范围的限制,解模时也要实际问题实际考虑.将实际的最大(小)化问题,利用函数模型,转化为求函数的最大(小)是最优化问题中,最常见的思路之一.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.如图,已知四边形ABCD是边长为1的正方形,PA⊥平面ABCD,N是PC的中点.  
(Ⅰ)若PA=1,求二面角B-PC-D的大小;
(Ⅱ)求AN与平面PCD所成角的正弦值的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知某服装厂每天的固定成本是30000元,每天最大规模的生产量是m件.每生产一件服装,成本增加100元,生产x件服装的收入函数是R(x)=-$\frac{1}{3}$x2+400x,记L(x),P(x)分别为每天生产x件服装的利润和 平均利润(平均利润=$\frac{总利润}{总产量}$).
(1)当m=500时,每天生产量x为多少时,利润L(x)有最大值;
(2)每天生产量x为多少时,平均利润P(x)有最大值,并求P(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)=5x+b的图象经过第一、三、四象限,则实数b的取值范围是b<-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.计算:
(1)(2$\frac{1}{4}$)${\;}^{\frac{1}{2}}}$-(-9.6)0-(3$\frac{3}{8}$)${\;}^{-\frac{2}{3}}}$+(1.5)-2
(2)lg5+lg2•lg5+(lg2)2+eln3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列函数是幂函数且在(0,+∞)上是增函数的是(  )
A.y=2x2B.y=x-1C.y=x${\;}^{\frac{1}{2}}$D.y=x3-x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某小区提倡低碳生活,环保出行,在小区提供自行车出租.该小区有40辆自行车供小区住户租赁使用,管理这些自行车的费用是每日92元,根据经验,若每辆自行车的日租金不超过5元,则自行车可以全部出租,若超过5元,则每超过1元,租不出的自行车就增加2辆,为了便于结算,每辆自行车的日租金x元只取整数,用f(x)元表示出租自行车的日纯收入(日纯收入=一日出租自行车的总收入-管理费用)
(1)求函数f(x)的解析式及其定义域;
(2)当租金定为多少时,才能使一天的纯收入最大?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知△ABC是边长为1的等边三角形,点D,E分别是边AB,BC的中点,连接DE并延长到点F,使$\overrightarrow{DE}$=2$\overrightarrow{EF}$,则$\overrightarrow{AF}$•$\overrightarrow{BC}$的值为(  )
A.$\frac{1}{8}$B.$\frac{1}{4}$C.$\frac{11}{8}$D.$-\frac{5}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\frac{2^x}{{{2^x}+\sqrt{2}}}$.
(1)求f(x)+f(1-x)的值;
(2)若数列{an}满足an=f(0)+f($\frac{1}{n}$)+f($\frac{2}{n}$)+…+f($\frac{n-1}{n}$)+f(1)(n∈N*),求数列{an}的通项公式;
(3)若数列{bn}满足bn=2nan,Sn是数列{bn}的前n项和,是否存在正实数k,使不等式knSn>3bn对于一切的n∈N*恒成立?若存在,请求出k的取值范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案