分析 (1)由已知函数解析式求出f(-x),再由f(x)+f(-x)=0求得a值;
(2)由f(-x)≤f(x)-1,得$f(x)≥\frac{1}{2}$,即$2{log_4}(1+x)-{log_4}(1-{x^2})≥\frac{1}{2}$.然后求解对数不等式得答案.
解答 解:(1)∵$f(x)=2{log_4}(1+x)-{log_4}(1+a{x^2})$,
∴$f(-x)=2{log_4}(1-x)-{log_4}(1+a{x^2})$.
∴$f(-x)+f(x)=2{log_4}(1-x)+2{log_4}(1+x)-2{log_4}(1+a{x^2})$=$2{log_4}(1-{x^2})-2{log_4}(1+a{x^2})$
∵f(x)在定义域(-1,1)内是奇函数,∴f(-x)+f(x)=0,
即$2{log_4}(1-{x^2})-2{log_4}(1+a{x^2})=0⇒a=-1$;
(2)由f(-x)≤f(x)-1,得-f(x)≤f(x)-1,∴$f(x)≥\frac{1}{2}$,
即$2{log_4}(1+x)-{log_4}(1-{x^2})≥\frac{1}{2}$.
∴${log_4}{(1+x)^2}-{log_4}(1-{x^2})≥{log_4}{4^{\frac{1}{2}}}⇒{log_4}\frac{1+x}{1-x}≥{log_4}2$.
∵4>1,∴$\frac{1+x}{1-x}≥2$,其中-1<x<1.解得$\frac{1}{3}≤x<1$.
故所求的实数x的取值范围是$\{x|\frac{1}{3}≤x<1\}$.
点评 本题考查函数恒成立问题,考查了函数奇偶性的性质,体现了数学转化思想方法,是中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 21 | B. | -21 | C. | 41 | D. | 61 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a≤2 | B. | a≤1 | C. | a≤-1 | D. | a≤0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 20 | B. | 22 | C. | 28 | D. | 24 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com