精英家教网 > 高中数学 > 题目详情
9.已知R上可导函数f(x)的图象如图所示,则不等式(x-1)f′(x)>0的解集(-1,1)∪(1,+∞).

分析 由函数f(x)的图象可得其导函数在不同区间内的符号,再由(x-1)f′(x)>0得到关于x的不等式组,求解不等式组后取并集即可得到原不等式的解集.

解答 解:由函数f(x)的图象可得,
当x∈(-∞,-1),(1,+∞)时,f′(x)>0,
当x∈(-1,1)时,f′(x)<0.
由(x-1)f′(x)>0?$\left\{\begin{array}{l}{f′(x)>0}\\{x-1>0}\end{array}\right.$①或$\left\{\begin{array}{l}{f′(x)<0}\\{x-1<0}\end{array}\right.$②
解①得,x>1,解②得,-1<x<1,
综上,不等式(x-1)f′(x)>0的解集为(-1,1)∪(1,+∞),
故答案为:(-1,1)∪(1,+∞).

点评 本题考查了函数的单调性与导数的关系,训练了不等式组的解法,考查了数学转化思想方法,是基础的运算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=a(x+$\frac{1}{x}$)-|x-$\frac{1}{x}$|(x>0),a∈R.
(1)若$a=\frac{1}{2}$,求y=f(x)的单调区间;
(2)若关于x的方程f(x)=t有四个不同的解x1,x2,x3,x4,求实数a,t应满足的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若角60°的终边上有一点(4,a),则a的值是(  )
A.4$\sqrt{3}$B.-4$\sqrt{3}$C.$\frac{4\sqrt{3}}{3}$D.-$\frac{4\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.A,B,C,D四人排成一排,如果A,B必须相邻,则总排法种数为(  )
A.12B.48C.36D.24

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设A,B,C为直线l上不同的三点,O为直线l外一点.若p$\overrightarrow{OA}$+q$\overrightarrow{OB}$+r$\overrightarrow{OC}$=$\overrightarrow 0$(p,q,r∈R),则p+q+r=(  )
A.3B.-1C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设复数z=2+i(i为虚数单位),z的共轭复数为$\overline{z}$,则|(1-z)•$\overline{z}$|=(  )
A.$\sqrt{10}$B.10C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.一个口袋中装有形状和大小完全相同的3个红球和2个白球,甲从这个口袋中任意摸取2个球,则甲摸得的2个球恰好都是红球的概率是$\frac{3}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数y=tanx在其定义域上的奇偶性是(  )
A.奇函数B.偶函数C.既奇且偶的函数D.非奇非偶的函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设关于x的方程x2+2(1-m)x+m2-m=0有实数解.
(1)求m的取值范围;
(2)求两根之积的最大值或最小值.

查看答案和解析>>

同步练习册答案