分析 由函数f(x)的图象可得其导函数在不同区间内的符号,再由(x-1)f′(x)>0得到关于x的不等式组,求解不等式组后取并集即可得到原不等式的解集.
解答 解:由函数f(x)的图象可得,
当x∈(-∞,-1),(1,+∞)时,f′(x)>0,
当x∈(-1,1)时,f′(x)<0.
由(x-1)f′(x)>0?$\left\{\begin{array}{l}{f′(x)>0}\\{x-1>0}\end{array}\right.$①或$\left\{\begin{array}{l}{f′(x)<0}\\{x-1<0}\end{array}\right.$②
解①得,x>1,解②得,-1<x<1,
综上,不等式(x-1)f′(x)>0的解集为(-1,1)∪(1,+∞),
故答案为:(-1,1)∪(1,+∞).
点评 本题考查了函数的单调性与导数的关系,训练了不等式组的解法,考查了数学转化思想方法,是基础的运算题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4$\sqrt{3}$ | B. | -4$\sqrt{3}$ | C. | $\frac{4\sqrt{3}}{3}$ | D. | -$\frac{4\sqrt{3}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | -1 | C. | 1 | D. | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{10}$ | B. | 10 | C. | $\sqrt{2}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com