精英家教网 > 高中数学 > 题目详情
4.在△ABC中,A,B,C所对的边分别为a,b,c已知$b=\sqrt{2}$,c=1,B=45°,求a,A,C.

分析 利用正弦定理,即可求解.

解答 解:由正弦定理可得$\frac{\sqrt{2}}{\frac{\sqrt{2}}{2}}=\frac{1}{sinC}$,∴sinC=$\frac{1}{2}$,
∵c<b,∴C<B,∴C=30°,
∴A=′180°-45°-35°=105°,
∴$\frac{a}{sin10{5}^{°}}=\frac{\sqrt{2}}{\frac{\sqrt{2}}{2}}$,∴a=$\frac{\sqrt{6}+\sqrt{2}}{2}$.

点评 本题考查正弦定理,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.方程sin2x=sinx在区间[0,2π)内解的个数是4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=4x-2•2x+1-6,其中x∈[0,3].
(1)求函数f(x)的最大值和最小值;
(2)若实数a满足f(x)-a•2x≥0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率为$\frac{{\sqrt{3}}}{2}$,且过点A(2,1).
(Ⅰ) 求椭圆C的方程;
(Ⅱ) 若P,Q是椭圆C上的两个动点,且使∠PAQ的角平分线总垂直于x轴,试判断直线PQ的斜率是否为定值?若是,求出该值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0),其焦距为2,点P(1,$\frac{3}{2}$)在椭圆C上.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)是否存在与椭圆C交于A,B两点的直线l:y=mx+t(m∈R),使得$\overrightarrow{OA}$•$\overrightarrow{OB}$=0成立?若存在,求出实数t的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设向量$\overrightarrow{a}$=(4,2),$\overrightarrow{b}$=(1,-1),则(2$\overrightarrow{a}$-$\overrightarrow{b}$)•$\overrightarrow{b}$等于(  )
A.2B.-2C.-12D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在△ABC中,内角A,B,C所对的边分别是a,b,c已知b=4,c=5,A=60°.
(1)求边长a和△ABC的面积;
(2)求sin2B的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设U=R,集合A={x|-3≤x≤5},B={x|x<-2,或x>6},求:
(1)A∩B;
(2)(∁UA)∪(∁UB).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设集合A={x|x2+3x+2=0},B={x|x2+ax+4=0},若B≠Φ,B⊆A,则实数a的取值集合是{4}.

查看答案和解析>>

同步练习册答案