分析 方程即sinx=0或cosx=$\frac{1}{2}$,结合正弦函数、余弦函数的图象以及x∈[0,2π),分别求得x的值,可得结论
解答 解:方程sin2x=sinx,即2sinxcosx=sinx,即 sinx=0或cosx=$\frac{1}{2}$.
由sinx=0,x∈[0,2π),可得x=0或π;由cosx=$\frac{1}{2}$,x∈(0,2π),可得x=$\frac{π}{3}$或x=$\frac{5π}{3}$.
综上可得,方程sin2x=sinx在区间[0,2π)内的解的个数是4,
故答案为:4.
点评 本题主要考查三角方程的解法,正弦函数、余弦函数的图象,体现了转化、分类讨论的数学思想,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 11 | B. | 13 | C. | 17 | D. | 19 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com