精英家教网 > 高中数学 > 题目详情
3.函数f(x)=mlnx-cosx在x=1处取到极值,则m的值为(  )
A.sin1B.-sin1C.cos1D.-cos1

分析 求出函数f(x)的导数,根据f′(1)=0,求出m的值即可.

解答 解:f′(x)=$\frac{m}{x}$+sinx,
由题意得:f′(1)=m+sin1=0,解得:m=-sin1,
故选:B.

点评 本题考查了函数极值的意义,考查导数的应用,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.若x、y满足约束条件$\left\{\begin{array}{l}x+y≥1\\ y≤x\\ x≥1\end{array}\right.$,则$\frac{y+1}{x-1}$的取值范围为(-1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知S=1+2+3+…+100.请设计一个程序框图,输出S的值并写出相应的程序.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在△ABC中,若tanAtanB=1,则$sin(C+\frac{π}{3})$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设F1,F2分别是椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左、右焦点,点P在椭圆C上,若线段PF1的中点在y轴上,∠PF1F2=30°,F1F2=2,则椭圆的标准方程为$\frac{{x}^{2}}{3}+\frac{{y}^{2}}{2}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.甲、乙两台机床同时生产一种零件,10天中,两台机床每天出的次品数分别是:
甲:0、1、0、2、2、0、3、1、2、4;
乙:2、3、1、1、0、2、1、1、0、1;
则机床性能较好的为乙.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.方程sin2x=sinx在区间[0,2π)内解的个数是4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知A、D分别为椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1,({a>b>0})$的左顶点与上顶点,椭圆的离心率e=$\frac{{\sqrt{3}}}{2}$,F1、F2为椭圆的左、右焦点,点P是线段AD上的任意一点,且$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$的最大值为1.
(1)求椭圆E的方程.
(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且OA⊥OB(O为坐标原点),若存在,求出该圆的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率为$\frac{{\sqrt{3}}}{2}$,且过点A(2,1).
(Ⅰ) 求椭圆C的方程;
(Ⅱ) 若P,Q是椭圆C上的两个动点,且使∠PAQ的角平分线总垂直于x轴,试判断直线PQ的斜率是否为定值?若是,求出该值;若不是,说明理由.

查看答案和解析>>

同步练习册答案