精英家教网 > 高中数学 > 题目详情
11.在△ABC中,若tanAtanB=1,则$sin(C+\frac{π}{3})$=$\frac{1}{2}$.

分析 利用两角和的正切公式求得tan(A+B)不存在,可得A+B等于$\frac{π}{2}$,从而得到C=$\frac{π}{2}$,从而求得要求式子的值.

解答 解:△ABC中,若tanAtanB=1,tan(A+B)=$\frac{tanA+tanB}{1-tanAtanB}$ 不存在,故A+B=$\frac{π}{2}$,
∴C=π-A-B=$\frac{π}{2}$,则$sin(C+\frac{π}{3})$=sin($\frac{π}{2}$+$\frac{π}{3}$)=cos$\frac{π}{3}$=$\frac{1}{2}$,
故答案为:$\frac{1}{2}$.

点评 本题主要考查两角和的正切公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.设z的共轭复数是$\overline z$,若z+$\overline z=4,z•\overline z=8,则\frac{z}{\overline z}$=(  )
A.iB.-iC.±1D.±i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.某产品在某销售点的零售价x(单位:元)与每天的销售量y(单位:个)的统计数据如表所示:
x16171819
y50344131
由表可得回归直线方程$\widehaty=\widehatbx+\widehata$中的$\widehatb=-5$,根据模型预测零售价为20元时,每天的销售量约为(  )
A.30B.29C.27.5D.26.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.利用函数单调性的定义证明:证明函数f(x)=x2+3x在[-$\frac{3}{2}$,+∞)是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x),且f(x)=2x•f'(1)+lnx,则f'(1)=(  )
A.-eB.-1C.1D.e

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.执行如图所示的程序框图,则输出的结果为(  )
A.$\frac{1}{2}$B.$\frac{3}{2}$C.-1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数f(x)=mlnx-cosx在x=1处取到极值,则m的值为(  )
A.sin1B.-sin1C.cos1D.-cos1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=|2x+1|+|x-1|,则f(x)的最小值为(  )
A.0B.2C.$\frac{3}{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数f(x)=log${\;}_{\frac{1}{2}}$(x2-2x-3)的单调递减区间是(  )
A.(-∞,1)B.(-∞,-1)C.(3,+∞)D.(1,+∞)

查看答案和解析>>

同步练习册答案