精英家教网 > 高中数学 > 题目详情
20.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0),其焦距为2,点P(1,$\frac{3}{2}$)在椭圆C上.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)是否存在与椭圆C交于A,B两点的直线l:y=mx+t(m∈R),使得$\overrightarrow{OA}$•$\overrightarrow{OB}$=0成立?若存在,求出实数t的取值范围,若不存在,请说明理由.

分析 (Ⅰ)由题意可得c=1,再由点P(1,$\frac{3}{2}$)在椭圆C上.,可得a=2,b=$\sqrt{3}$,进而得到a,即可得到椭圆方程;
(Ⅱ)设A(x1,y1),B(x2,y2)联立$\left\{\begin{array}{l}{y=mx+t}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$得(3+4m2)x2+8tmx+4t2-12=0.由此利用根的判别式和韦达定理结合已知条件能求出实数t的取值范围.

解答 解:(Ⅰ)由椭圆C的焦距2c=2,解得c=1,
∵点P(1,$\frac{3}{2}$)在椭圆C上,∴$\frac{1}{{a}^{2}}+\frac{9}{4({a}^{2}-1)}=1$,解得a2=4,b2=3
∴椭圆C的标准方程:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$.
(Ⅱ)设A(x1,y1),B(x2,y2
联立$\left\{\begin{array}{l}{y=mx+t}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$得(3+4m2)x2+8tmx+4t2-12=0.
△=(8tm)2-4(3+4m2)(4t2-12)>0,化简得3+4m2>t2
x1+x2=$\frac{-8mt}{3+4{m}^{2}}$,x1x2=$\frac{4{t}^{2}-12}{3+4{m}^{2}}$,
假设$\overrightarrow{OA}$•$\overrightarrow{OB}$=0成立,所以x1x2+y1y2=0.
x1x2+(mx1+t)(mx2+t)=0,
(1+m2)x1x2+tm(x1+x2)+m2=0,
化简得7t2=12+12m2.代入3+4m2>t2中得${t}^{2}>\frac{3}{4}$.
有∵7t2=12+12m2≥12,∴t2≥$\frac{12}{7}$,即$≥\frac{2\sqrt{21}}{7}$,或t$≤-\frac{2\sqrt{21}}{7}$.
∴存在实数t,使得$\overrightarrow{OA}$•$\overrightarrow{OB}$=0成立,实数t的取值范围为(-$∞,-\frac{2\sqrt{21}}{7}$]∪[$\frac{2\sqrt{21}}{7}$,+∞).

点评 本题考查椭圆的标准方程的求法,考查满足条件的直线方程是否存在的判断,解题时要认真审题,注意挖掘题设中的隐含条件,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.若椭圆${C_1}:\frac{x^2}{{{a_1}^2}}+\frac{y^2}{{{b_1}^2}}=1\;(\;{a_1}>0,{b_1}>0)$,和椭圆${C_2}:\frac{x^2}{{{a_2}^2}}+\frac{y^2}{{{b_2}^2}}=1\;(\;{a_2}>{b_2}>0)$的焦点相同,且a1>a2;给出如下四个结论:其中,所有正确结论的序号为①③
①椭圆C1和椭圆C2一定没有公共点;  
②$\frac{a_1}{a_2}>\frac{b_1}{b_2}$;
③${a_1}^2-{a_2}^2={b_1}^2-{b_2}^2$
④a1-a2<b1-b2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=|2x-1|+1,不等式f(x)<2的解集为P.
(1)若不等式||x|-2|<1的解集为Q,求证:P∩Q=∅;
(2)若m>1,且n∈P,求证:$\frac{m+n}{1+mn}$>1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设函数f(x)的导函数为f'(x),且满足$xf'(x)+f(x)=\frac{e^x}{x}$,f(1)=e,则x>0时,f(x)(  )
A.有极大值,无极小值B.有极小值,无极大值
C.既有极大值又有极小值D.既无极大值也无极小值

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.i是虚数单位,复数z满足条件|z-i|=|3-4i|,则|z|的最大值是(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在△ABC中,A,B,C所对的边分别为a,b,c已知$b=\sqrt{2}$,c=1,B=45°,求a,A,C.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.某工厂甲、乙、丙、丁四个车间生产了同一种产品共计2800件,现要用分层抽样的方法从中抽取140件进行质量检测,且甲、丙两个车间共抽取的产品数量为60,则乙、丁两车间生产的产品总共有(  )
A.1000件B.1200件C.1400件D.1600件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知$sin({α-\frac{7π}{6}})=\frac{1}{3}$,则$sin({2α+\frac{7π}{6}})$的值为-$\frac{7}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设M={α|α=k•90°,k∈Z}∪{α|α=k•180°+45°,k∈Z},N={α|α=k•45°,k∈Z},则(  )
A.M⊆NB.M?NC.M=ND.M∩N=Φ

查看答案和解析>>

同步练习册答案