精英家教网 > 高中数学 > 题目详情
1.已知A1、A2分别是椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右顶点,点P为椭圆C上一点(与A1、A2不重合),若直线PA1与PA2的斜率乘积是-$\frac{3}{4}$,则椭圆C的离心率为(  )
A.$\frac{1}{4}$B.$\sqrt{3}$C.$\frac{\sqrt{3}}{2}$D.$\frac{1}{2}$

分析 由题意可得A,B的坐标,设出P的坐标,由P在椭圆上得到关于P的坐标的方程,再由直线PA1与PA2的斜率乘积是-$\frac{3}{4}$得关于P的坐标的另一方程,联立可得a,b的关系,进一步求出椭圆C的离心率.

解答 解:由已知得:A1(-a,0),A2(a,0),设P(x0,y0),
由点P为椭圆C上一点可得${{y}_{0}}^{2}=\frac{{a}^{2}-{{x}_{0}}^{2}}{{a}^{2}}•{b}^{2}$,①
∵直线PA1与PA2的斜率乘积是-$\frac{3}{4}$,∴$\frac{{{y}_{0}}^{2}}{{{x}_{0}}^{2}-{a}^{2}}=-\frac{3}{4}$,②
联立①②得:$\frac{{b}^{2}}{{a}^{2}}=\frac{3}{4}$,∴$\frac{{a}^{2}-{c}^{2}}{{a}^{2}}=\frac{3}{4}$,得$\frac{{c}^{2}}{{a}^{2}}=\frac{1}{4}$,
∴e=$\frac{c}{a}=\frac{1}{2}$.
故选:D.

点评 本题考查椭圆的简单性质,考查了椭圆离心率的求法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知点P(1,1),过点P动直线l与圆C:x2+y2-2y-4=0交与点A,B两点.
(1)若|AB|=$\sqrt{17}$,求直线l的倾斜角;
(2求线段AB中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列函数中,在区间(0,+∞)上单调递增的是(  )
A.y=$\frac{x}{x+1}$B.y=1-xC.y=x2-xD.y=1-x2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.$\sqrt{a\sqrt{a\sqrt{a}}}$的值为(  )
A.${a^{\frac{1}{4}}}$B.${a^{\frac{2}{5}}}$C.${a^{\frac{7}{8}}}$D.${a^{\frac{5}{8}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知集合A={x|3≤x<7},B={x|2<x<10},求∁R(A∪B)、∁R(A∩B)、(∁RA)∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若F1、F2是双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1的左右焦点,M是双曲线右支上一动点,则$\frac{1}{|M{F}_{2}|}$-$\frac{1}{|M{F}_{1}|}$的最大值为(  )
A.$\frac{3}{4}$B.$\frac{4}{5}$C.1D.$\frac{5}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=1-ax+lnx,(x>0),函数g(x)满足g(x)=x-1,(x∈R).
(1)若函数f(x)在x=1时存在极值,求a的值;
(2)在(1)的条件下,当x>1时,blnx<$\frac{f(x)}{g(x)}$,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.甲用1000元人民币购买了一支股票,随即他将这支股票卖给乙,甲获利10%,而后乙又将这支股票返卖给甲,但乙损失了10%,最后甲按乙卖给甲的价格九折将这支股票卖给了乙,在上述股票交易中(  )
A.甲刚好盈亏平衡B.甲盈利1元C.甲盈利9元D.甲亏本1.1元

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在数列{an}中,a1=1,3anan-1+an-an-1=0(n≥2).数列{bn}满足bn=an•an+1,Tn为数列{bn}的前n项和.
(1)证明:数列{$\frac{1}{{a}_{n}}$}是等差数列;
(2)若对任意的n∈N*,不等式λTn<n+12•(-1)n恒成立,求实数λ的取值范围.

查看答案和解析>>

同步练习册答案