精英家教网 > 高中数学 > 题目详情

如图,圆柱的高为2,底面半径为3,AE、DF是圆柱的两条母线,B、C是下底面圆周上的两点,已知四边形ABCD是正方形.
(1)求证:
(2)求正方形ABCD的边长;
(3)求直线与平面所成角的正弦值.

(1) AE是圆柱的母线底面BEFC, 又面BEFC   
ABCD是正方形 面ABE 
面ABE         …… 3分
(2)四边形为矩形,且ABCD是正方形 EFBC          
       四边形EFBC为矩形 
BF为圆柱下底面的直径          …… 4分      
设正方形ABCD的边长为,则AD=EF=AB=
在直角中AE=2,AB=,且BE2+AE= AB,得BE=2-4        
在直角中BF=6,EF=,且BE+EF= BF,的BE2=36-2        …… 6分
解得=,即正方形ABCD的边长为                       …… 7分
(3)如图以F为原点建立空间直角坐标系,则A(,0,2),B(,4,0),

E(,0,0),(,0, 2),(,4,0), (,0,0) 
设面AEF的法向量为(),则
,则(,-)              …… 11分
设直线与平面所成角的大小为,则
  …… 12分
所以直线与平面所成角的正弦值为解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题满分12分)
如图,四棱锥的侧面垂直于底面在棱上,的中点,二面角

(1)求的值;
(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分10分) 如图,用一付直角三角板拼成一直二面角A—BD—C,若其中给定 AB="AD" =2,
(Ⅰ)求三棱锥A-BCD的体积;
(Ⅱ)求点A到BC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

、如图,ABCD是正方形,O是正方形的中心,PO底面ABCD,E是PC的中点。
求证:(1)PA∥平面BDE
(2)平面PAC平面BDE

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分15分)如图,在四棱锥中,底面是矩形,平面与平面所成角的正切值依次是依次是的中点.
(Ⅰ)求证:
(Ⅱ)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四边形ABCD中,为正三角形,,AC与BD交于O点.将沿边AC折起,使D点至P点,已知PO与平面ABCD所成的角为,且P点在平面ABCD内的射影落在内.

(Ⅰ)求证:平面PBD;
(Ⅱ)若已知二面角的余弦值为,求的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分16分)如图①,分别是直角三角形的中点,,沿将三角形折成如图②所示的锐二面角,若为线段中点.求证:
(1)直线平面
(2)平面平面
      

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.(本小题满分14分)

四棱锥中,侧棱,底面是直角梯形,,且的中点.
(1)求异面直线所成的角;
(2)线段上是否存在一点,使得?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

如图,三棱柱的各棱长均为2,侧棱与底面所成的角为为锐角,且侧面⊥底面,给出下列四个结论:



③直线与平面所成的角为
.
其中正确的结论是( )

A.①③ B.②④ C.①③④ D.①②③④

查看答案和解析>>

同步练习册答案