如图,圆柱的高为2,底面半径为3,AE、DF是圆柱的两条母线,B、C是下底面圆周上的两点,已知四边形ABCD是正方形.
(1)求证:;
(2)求正方形ABCD的边长;
(3)求直线与平面所成角的正弦值.
(1) AE是圆柱的母线底面BEFC, 又面BEFC
又ABCD是正方形 又面ABE
又面ABE …… 3分
(2)四边形为矩形,且ABCD是正方形 EFBC
四边形EFBC为矩形
BF为圆柱下底面的直径 …… 4分
设正方形ABCD的边长为,则AD=EF=AB=
在直角中AE=2,AB=,且BE2+AE= AB,得BE=2-4
在直角中BF=6,EF=,且BE+EF= BF,的BE2=36-2 …… 6分
解得=,即正方形ABCD的边长为 …… 7分
(3)如图以F为原点建立空间直角坐标系,则A(,0,2),B(,4,0),
E(,0,0),(,0, 2),(,4,0), (,0,0)
设面AEF的法向量为(,,),则
令,则即(,,-) …… 11分
设直线与平面所成角的大小为,则
…… 12分
所以直线与平面所成角的正弦值为解析
科目:高中数学 来源: 题型:解答题
(本题满分10分) 如图,用一付直角三角板拼成一直二面角A—BD—C,若其中给定 AB="AD" =2,,,
(Ⅰ)求三棱锥A-BCD的体积;
(Ⅱ)求点A到BC的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分15分)如图,在四棱锥中,底面是矩形,平面,与平面所成角的正切值依次是和,,依次是的中点.
(Ⅰ)求证:;
(Ⅱ)求直线与平面所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,四边形ABCD中,为正三角形,,,AC与BD交于O点.将沿边AC折起,使D点至P点,已知PO与平面ABCD所成的角为,且P点在平面ABCD内的射影落在内.
(Ⅰ)求证:平面PBD;
(Ⅱ)若已知二面角的余弦值为,求的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分16分)如图①,,分别是直角三角形边和的中点,,沿将三角形折成如图②所示的锐二面角,若为线段中点.求证:
(1)直线平面;
(2)平面平面.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
20.(本小题满分14分)
四棱锥中,侧棱,底面是直角梯形,,且,是的中点.
(1)求异面直线与所成的角;
(2)线段上是否存在一点,使得?若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:单选题
如图,三棱柱的各棱长均为2,侧棱与底面所成的角为,为锐角,且侧面⊥底面,给出下列四个结论:
①;
②;
③直线与平面所成的角为;
④.
其中正确的结论是( )
A.①③ | B.②④ | C.①③④ | D.①②③④ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com