(本小题满分16分)如图①,,分别是直角三角形边和的中点,,沿将三角形折成如图②所示的锐二面角,若为线段中点.求证:
(1)直线平面;
(2)平面平面.
科目:高中数学 来源: 题型:解答题
(本小题满分12分)如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.
(1)求证:PC⊥BC;
(2)求点A到平面PBC的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题共l5分) 如图,在直三棱柱ABC-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一点,P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA1.
(I)求证:CD=C1D:
(II)求二面角A-A1D-B的平面角的余弦值;
(Ⅲ)求点C到平面B1DP的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:单选题
已知点A(-3,1,4),则点A关于x轴的对称点的坐标为( )
A.(-3,1,-4) | B.(3,-1,-4) | C.(-3,-1,-4) | D.(-3,,1,-4) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,圆柱的高为2,底面半径为3,AE、DF是圆柱的两条母线,B、C是下底面圆周上的两点,已知四边形ABCD是正方形.
(1)求证:;
(2)求正方形ABCD的边长;
(3)求直线与平面所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分15分)四棱锥P-ABCD中,PA⊥平面ABCD,E为AD的中点,ABCE为菱形,∠BAD=120°,PA=AB,G,F分别是线段CE,PB上的动点,且满足==λ∈(0,1).
(Ⅰ) 求证:FG∥平面PDC;
(Ⅱ) 求λ的值,使得二面角F-CD-G的平面角的正切值为.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com