(本小题满分12分)
如图,矩形中,,,为上的点,且,.
(Ⅰ)求证:平面;
(Ⅱ)求证:平面;
(Ⅲ)求三棱锥的体积.
科目:高中数学 来源: 题型:解答题
(本小题满分13分)如图(甲),在直角梯形ABED中,AB//DE,ABBE,ABCD,且BC=CD,AB=2,F、H、G分别为AC ,AD ,DE的中点,现将△ACD沿CD折起,使平面ACD平面CBED,如图(乙).
(1)求证:平面FHG//平面ABE;
(2)记表示三棱锥B-ACE 的体积,求的最大值;
(3)当取得最大值时,求二面角D-AB-C的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分15分)如图,在四棱锥中,底面是矩形,平面,与平面所成角的正切值依次是和,,依次是的中点.
(Ⅰ)求证:;
(Ⅱ)求直线与平面所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分16分)如图①,,分别是直角三角形边和的中点,,沿将三角形折成如图②所示的锐二面角,若为线段中点.求证:
(1)直线平面;
(2)平面平面.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
20.(本小题满分14分)
四棱锥中,侧棱,底面是直角梯形,,且,是的中点.
(1)求异面直线与所成的角;
(2)线段上是否存在一点,使得?若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)如图,在直三棱柱ABC-A1B1C1中,点D、E分别在边BC、
B1C1上,CD=B1E=AC,ÐACD=60°.
求证:(1)BE∥平面AC1D;
(2)平面ADC1⊥平面BCC1B1.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(14分)如图,四棱锥P—ABCD的底面是AB=2,BC=的矩形,侧面PAB
是等边三角形,且侧面PAB⊥底面ABCD
(I)证明:侧面PAB⊥侧面PBC;
(II)求侧棱PC与底面ABCD所成的角;
(III)求直线AB与平面PCD的距离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com